SESSION H:

SEU

PHENOMENA & HARDENING
ABSTRACT

The one-dimensional computer program DIODE has been used to calculate charge collection in single ionizing events in silicon and gallium arsenide diodes. Avalanche multiplication is calculated to occur above a threshold of 3 V in a silicon diode, in agreement with published measurements. Since avalanche may lead to burnout in very-large-scale integration semiconductors, it is a greater danger than the funneling effect of space charge. Carrier recombination is found to be important in gallium arsenide.

INTRODUCTION

When a highly ionizing particle produces a track of dense ionization in a semiconductor and affects device operation through charge collection, a single-event upset is said to occur. There is now extensive literature on this topic.

Campbell et al. have published measurements showing that avalanche multiplication is important in charge collection in single-event upsets. They noted evidence of avalanche multiplication above 3 V in a silicon diode which showed a breakdown voltage of about 7 V. Many papers (e.g., H. L. Grubin et al.) have reported measurements of charge collection from ionized-particle tracks, but none, to our knowledge, has included avalanche multiplication. The emphasis in most of these papers has been on the field funneling effect, a result of the extension of the high field region, which causes charge collection from beyond the normal depletion region of the device.

This paper presents our approach to the avalanche calculations, gives results of calculations of avalanche multiplication in silicon and gallium arsenide diodes, and concludes with further discussion and conclusions.

APPROACH

Charge collection of tracks from an ionizing particle has been calculated with the Harry Diamond Laboratories one-dimensional computer program DIODE. The computer program has been described previously. Briefly, the continuity, current density formulation, and Poisson's equations are solved explicitly in their difference form. For these calculations, a constant voltage was applied through a series resistance of 50 Ω to the diode, which was shunted by a 1-pF capacitance. An area of 1 × 10^-6 cm^2 was chosen for most calculations to determine the interaction of the diode with the external circuit. Ideal Schottky barrier diodes were simulated for all calculations except where a comparison is made with a PN junction diode.

Uniform and equal densities of electrons and holes over the track length were added to the equilibrium reverse-bias distributions as initial conditions for the calculations. Therefore, only the decreasing current portion of the pulse is calculated.

RESULTS

Silicon

Most of the material parameters for the silicon calculations were those given by Sze. However, the important avalanche coefficient was taken from Van Overstraeten and DeMan. The first calculations were made for a 20-μm N-type diode doped to 1 × 10^15 cm^-3. Ideal abrupt (Schottky barrier) junctions were used for most calculations. The calculated breakdown voltage is 250 V and the depletion width is 19 μm at breakdown. A negative differential resistance (second breakdown) is calculated at 327 V.

Calculations were made for an ionized track density of 1 × 10^14 cm^-3 in order to eliminate appreciable space-charge distortion. The resulting current density, with and without avalanche multiplication, is plotted in figure 1 for an applied voltage of 200 V and a 20-μm track length. For fully saturated velocities of 1 × 10^7 cm/s and no diffusion, the current density would drop linearly from 320 A/cm^2 to zero at 0.2 ns. Actually, the field drops to near zero at 17.4 μm and the hole velocity is not saturated over about half the diode width. The inset of figure 1 shows the electron and hole densities across the diode at selected times for the calculation without avalanche. It is seen that the hole density is less steep than the electron front, because of the higher hole velocity as the field increases to the left. Avalanche multiplication was noted down to 120 V, slightly less than one half the avalanche breakdown voltage.

At voltages well above the avalanche breakdown voltage, avalanche (or IMPATT) oscillations are noted. These oscillations are comparatively large for a track density of 2 × 10^15 cm^-3. Figure 2 shows the temporal growth or decay for track lengths of 10 and 20 μm. It is seen that the shorter track length, with only one-half the initial charge of the longer track, has the lower second-breakdown voltage (current increasing indefinitely). This results from a more efficient avalanche oscillation; normally the second breakdown voltage decreases as the track density, as well as the total charge, increases.

The minimum voltage for avalanche multiplication, V_{min}, and the second breakdown voltage, V_{BD2}, are plotted as a function of track density in figure 3. Also plotted in this figure is the avalanche breakdown voltage, V_{BD0}, for constant-doping, one-sided, N-type diodes as a function of that doping density. The latter calculations pertain to diodes not punched through at breakdown; diodes which punch through before breakdown have lower breakdown voltages. The criterion for V_{min} was set at an increase of collected charge of about 5 to 10 percent; a more precise criterion would not be advantageous at this time. These calculations were made with various diode widths and track lengths equal to the diode width. For track densities of 10^15 cm^-3 and less, the diode width was 20 μm; for track densities of 2 × 10^15 cm^-3 and
greater, the diode width was 1 μm. Intermediate diode widths were used and overlapping track densities assured that there was little voltage variation with diode width for non-punched-through diodes. Further discussion of this figure will be found in the Discussion section.

Current density as a function of time is plotted in figure 4 for a 0.5-μm P-type diode doped to 1×10^{15} cm$^{-3}$, an initial track density of 1×10^{18} cm$^{-3}$, and various applied voltages. With neither space-charge effects nor diffusion and assuming saturated velocities, the charge would be collected in 5 ps. At just above the minimum voltage for avalanche multiplication, $V_{\text{min}} = 5$ V, the charge collection time is 32 ps. The charge collection time first decreases as the voltage increases and then increases as avalanche multiplication increases. The charge multiplier, M, the ratio of the total charge collected to the initial charge in the track, is shown in the inset of figure 4. The inset curve has the same shape as the measured curve of Campbell et al., namely, approximately an exponential increase from a constant value at low voltages. The measured curves were for similar doping, geometry, and track parameters as the calculations. Also plotted in the inset of figure 4 are the results for calculations for a 1-μm diode.

The inset curve data of figure 4 have been replotted in figure 5, where $M = 1$ is plotted on a logarithmic scale against the voltage. Also plotted in this figure are the results for a 0.2-μm diode with an initial track density of 2×10^{18} cm$^{-3}$ and for a 0.1-μm diode with a density of 5×10^{18} cm$^{-3}$. In order to plot the experimental data given in figure 2

![Figure 1](image1.png)

Figure 1. Calculated current density as a function of time for a track density of 1×10^{14} cm$^{-3}$ and a voltage of 200 V. Dashed curve includes avalancheing, whereas dot-dashed curve does not. Inset shows electron (solid curves) and hole (dashed curves) density distributions for nonavalanching case at selected times in picoseconds.

![Figure 2](image2.png)

Figure 2. Computed avalanche oscillations are shown for a 20-μm diode near the second breakdown voltage. Solid and dashed lines are for track lengths of 20 and 10 μm, respectively. The initial track density is 2×10^{15} cm$^{-3}$. Parameter is applied voltage.

![Figure 3](image3.png)

Figure 3. Minimum avalanche voltage (V_{min}) and second breakdown voltage (V_{BD}) are plotted as a function of initial track densities. Parameter is diode width in micrometers. Also shown is first breakdown voltage (V_{BD}) as a function of doping levels of N-type diodes.
The inset of figure 4 shows the electron and hole distributions across the diode during charge collection for small (mobile) space charge conditions. Figure 6 shows the calculated distributions of electrons and holes during charge collection in the P-type diode doped to 1×10^{15} cm$^{-3}$. The initial track density is 1×10^{18} cm$^{-3}$ and the applied voltage is 3 V, about the avalanche threshold. Note the steepness of the concentration gradients as electrons move to the right and the holes to the left. The steepness results from the higher field and thereby higher velocity seen by the trailing carriers. The charge density "shoulders," especially noticeable from 1 to 4 ps (at densities from 1×10^{14} to 3×10^{16} cm$^{-3}$), are the result of avalanche multiplication. The fluctuation of carriers about the 1×10^{18} cm$^{-3}$ concentration (shown only for two curves) is not physical, but a result of incipient calculation instability. Increasing the number of calculation grid points removes the instability, which will be discussed later.

Figure 4. Current density as a function of time for a 0.5-μm P-type diode doped to 1×10^{15} cm$^{-3}$. Initial track density is 1×10^{18} cm$^{-3}$. Parameter is applied voltage. Inset shows multiple of initial charge as a function of applied voltage for both the 0.5-μm diode and a 1-μm diode.

Figure 5. Charge multiple, M, less one is plotted on a logarithmic scale against applied voltage. Parameter for calculated curves is initial track density. Diode widths are given in text. Measured data are from Campbell et al. Points at top of figure are second breakdown voltages.

Figure 6. Carrier distributions at selected times are shown for a P-type diode doped to 1×10^{15} cm$^{-3}$. Electron densities are shown by solid lines and hole distributions by dashed lines. Parameter is time in picoseconds.
The field distributions corresponding to the distributions in figure 6 are shown in figure 7. A logarithmic scale is used to show more detail. The high fields in the depleted regions are contrasted to the low fields in the plasma region. The maximum field is 6×10^5 V/cm at 0.6 ps. This maximum field is for the avalanche threshold voltage. Higher fields are calculated at higher voltages. The time to attain the maximum field assumes zero time for track formation.

As indicated earlier, most calculations have been made simulating ideal, abrupt, Schottky barrier diodes. Calculations were also made to simulate a PN junction diode: the width of the P region was 0.1 \mu m and the N doping was 1×10^{17} for the 1-\mu m diode. The initial track density was 1×10^{17} cm$^{-3}$. The comparison of the two diodes with an applied voltage of 14 V showed that the current agreed to within 2 percent at all times. However, the maximum calculated field was less for the junction diode, as shown in figure 8, where the field distributions are shown at selected times for the two diodes. The applied voltage is just above the avalanche threshold and the charge multiplication is nearly equal for both diodes because, although the maximum field is less, the high field region is wider for the junction diode. Maximum fields are attained at 4 ps for the Schottky diode and at 5 ps for the junction diode.

Calculated current densities are plotted against time on a log-log scale in figure 9, for three initial track densities, 1×10^{16}, 1×10^{17}, and 1.5×10^{18} cm$^{-3}$. These diodes are doped to 1×10^{19} cm$^{-3}$ and the calculations are made at the avalanche threshold voltage, but with the avalanche coefficients equal to zero. Further calculations have been made for 2 and 5 times these track densities and for at least two diode widths. For clarity, two diode widths are shown only for the 1×10^{16} cm$^{-3}$ track density. The curves essentially coincide for the two diode widths until the charge is nearly completely removed in the shorter diode, when its current drops abruptly. The saturated-velocity transit time, T_0, for the 8-\mu m diode is 80 ps, whereas the sharp-drop transition time, T_T, is 130 ps. Likewise, $T_0 = 150$ ps and $T_T = 700$ ps for the 15-\mu m diode. When the time ratio T_T/T_0 is plotted against diode width on a log-log plot, a straight line with a slope of 2 results for each track density, i.e., $T_T/T_0 \propto d^2$. This is shown in figure 10(a). Since T_0 is proportional to d, the pulse collection time is proportional to d^2. In the same manner, a current density ratio may be defined by

![Figure 7](image7.png)
Figure 7. Electric field distribution corresponding to carrier distributions of figure 6. Parameter is time in picoseconds.

![Figure 8](image8.png)
Figure 8. Comparison of field distributions for a Schottky diode (a) and a pn junction diode (b). N-type diode is doped to 1×10^{15} cm$^{-3}$, applied voltage is 14 V, and initial track density is 1×10^{17} cm$^{-3}$. Parameter is time in picoseconds.
the ratio of the current at \(t = 0 \) to the current at \(T \). This current ratio increases quadratically with the diode width at each track density calculated, as shown in figure 10(b). These extrapolation expressions were used to construct the current density versus time curves for an initial track density of \(1 \times 10^{18} \) cm\(^{-3} \) and diode widths of 1 and 2 \(\mu \)m, as shown by the dashed curves of figure 9. The dashed curves were replotted on a linear scale, and the total charge collected was obtained graphically. In each case the total charge was found to be equal to the initial charge in the track.

The distance corresponding to the time ratio, \(T/\tau_0 = 4 \) (an average value was chosen), was plotted on a log-log plot as a function of track density. A straight line of the slope -0.75 resulted. Likewise, a similar plot for a fixed current ratio had the same slope. These extrapolations were found to be useful in estimating collection times for calculations made with track densities higher than \(1 \times 10^{18} \) cm\(^{-3} \).

Galium Arsenide

The material parameters of gallium arsenide are not as well known as those of silicon. The ionization coefficients were chosen to give a reasonable fit to the data of Bulean et al. Two electron velocity versus field curves were used. The parameters are listed in table 1. The hole mobility was chosen as \(400 \) cm\(^2\)/Vs, and the saturation velocity of \(1 \times 10^7 \) cm/s attained at a field of \(5 \times 10^6 \) V/cm. The other material parameters were taken from Sze.\(^6\)

The avalanche breakdown voltage for a 20-\(\mu \)m GaAs diode doped to \(1 \times 10^{14} \) cm\(^{-3} \) was found to be 296 V, compared to 250 V in silicon. Calculations have been made for only two track densities, \(1 \times 10^{14} \) cm\(^{-3} \) and \(1 \times 10^{15} \) cm\(^{-3} \). The collection currents as a function of time were quite similar to those for silicon in each case. These current curves were also nearly the same for the two electron velocity versus field curves, although the electron distributions at fixed times were greatly changed. Figure 11(a) shows the distribution of carriers at selected times for a 20-\(\mu \)m P-type GaAs diode doped to \(1 \times 10^{15} \) cm\(^{-3} \). The track density is \(1 \times 10^{14} \) cm\(^{-3} \), the voltage is 260 V, and the ionization coefficients were set to zero. The electron and hole velocities are plotted as a function of distance in figure 11(b).

For the P-type diode the field is low and the electron velocity is high on the cathode (left) side of the figure. The higher velocity of the trailing electrons causes the peaking of the electron distribution at the trailing edge. The velocity of the trailing edge of the electron distribution (specifically the \(5 \times 10^{13} \) cm\(^{-3} \) location) is found to be \(6 \times 10^6 \) cm/s, the input valley velocity. The holes accumulate near the cathode because their velocity is low there. For the complementary N-type diode, the high electron velocity region is near the anode and a depletion of electrons develops there. Despite the marked differences in the carrier distributions between the P- and N-type diodes, the maximum difference in current density at any time is 3 percent. For the \(2 \times 10^{18} \) cm\(^{-3} \) track density, the most noticeable effect of the negative velocity versus field characteristic is that the field is essentially forbidden to be in the range for a negative velocity characteristic, with abrupt transitions in both time and space. Again, there is very little effect on the current density at any time.

The recombination lifetime in GaAs is not known even in order of magnitude. Sze\(^6\) gives a lifetime, \(\tau_R \), of \(10^{-8} \) s. In the computer program DIODE the effective lifetime is inversely proportional to the carrier density. Calculations have been made in GaAs with infinite lifetime, with \(\tau_R = 10^{-8} \) s and with \(\tau_R = 2 \times 10^{-9} \) s for \(N_e = 1 \times 10^{15} \) cm\(^{-3} \). For the track density \(1 \times 10^{18} \) cm\(^{-3} \) calculations, the infinite lifetime calculations showed collection currents closely agree-

![Figure 9](https://via.placeholder.com/150)

Figure 9. Calculated current density is plotted as a function of time for diodes doped to \(1 \times 10^{18} \) cm\(^{-2} \). Diode widths in micrometers are given on right of figure, whereas initial track densities in cm\(^{-3} \) are given on left. Dashed curves are extrapolated.

![Figure 10](https://via.placeholder.com/150)

Figure 10. Log-log plot of time and current ratios (defined in text) as a function of diode widths. Parameter is initial track density in cm\(^{-3} \).
Figure 11. (a) Carrier distribution at selected times in picoseconds for P-type GaAs diode doped to 1×10^{15} cm$^{-3}$. Electron distributions are shown as solid curves while hole distributions are dashed. (b) Electron (solid) and hole (dashed) velocities are given as a function of position.

TABLE 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulation 1</th>
<th>Simulation 2</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low field mobility</td>
<td>7000</td>
<td>8500</td>
<td>cm2/V-s</td>
</tr>
<tr>
<td>Maximum velocity</td>
<td>1.9×10^7</td>
<td>2.1×10^7</td>
<td>cm/s</td>
</tr>
<tr>
<td>Field at maximum velocity</td>
<td>5.8×10^3</td>
<td>5.0×10^3</td>
<td>V/cm</td>
</tr>
<tr>
<td>Minimum velocity</td>
<td>6.8×10^6</td>
<td>6.0×10^6</td>
<td>cm/s</td>
</tr>
<tr>
<td>Field at minimum velocity</td>
<td>5.0×10^4</td>
<td>1.3×10^5</td>
<td>V/cm</td>
</tr>
<tr>
<td>Saturated velocity</td>
<td>1×10^7</td>
<td>1×10^7</td>
<td>cm/s</td>
</tr>
</tbody>
</table>

DISCUSSION

The most important question to be discussed is why our calculations show avalanche multiplication to be important, whereas others do not. One consideration is the grid spacing for calculations. In figure 7 it may be seen that at the time of the peak electric field the entire high field region is about 0.05 μm wide. Certainly the grid spacing must be small compared to this distance. Kreskovsky and Grubin used 28 unequally spaced grid points for their three-dimensional calculations for a 5-μm silicon diode. Their densest spacing seems to be about 0.05 μm. The maximum fields that Kreskovsky and Grubin calculated were below the avalanche threshold and they did not make avalanche calculations.

The DIODE computer program uses explicit difference equations, and for computational stability the time step must be less than the dielectric relaxation time, $\tau_D = \epsilon/\sigma$, where ϵ is the dielectric constant and σ is the conductivity. This is actually a physical constraint for accurate space charge calculations. Further, the grid spacing must be small compared to the van Roosbroeck polarization distance, $X_p = (v_p + v_n)/\tau_D$, where v_p and v_n are the hole and electron velocities, respectively. When a normal distribution of minority carriers is injected into a semiconductor, majority carriers largely neutralize the space charge in small multiples of τ_D, but the majority carrier distribution is dragged along behind the minority carrier distribution at a distance X_p.

For a track density of 1×10^{18} cm$^{-3}$ in silicon, $\tau_D = 3 \times 10^{-15}$ s and $X_p = 6 \times 10^{-8}$ cm for saturation velocities of 1×10^7 cm/s. The calculations in figure 7 were actually made with a timestep of 5×10^{-15} s and a grid distance of 2×10^{-4} cm. A partial, but recoverable, instability is responsible for the fluctuations noted in figure 7. If either the time or distance step is doubled, irreversible instability
results. Calculations made at lower track densities have shown that the temporal current decay is unaffected by the recoverable instability. To use these time and distance steps in a two- or three-dimensional calculation will be quite costly.

Some indication of the two-dimensional aspect of charge collection can be deduced from one-dimensional calculations. Figure 12(a) shows the field contours calculated at 42 ps for a track density of 2×10^{15} cm$^{-3}$ in a 20-μm N-type diode doped to 1×10^{15} cm$^{-3}$. The applied voltage is 240 V and the avalanche constants were set to zero. Electrons are depleted from the first 4 μm, increasing the field gradient, and holes from the last 2 μm, reversing the field gradient. The latter is an example of field tunneling. Figure 12(b) shows a sketch of constant field contours deduced from figure 12(a). The vertical axis (not quantified) is the track radius with the track centered. The field contours at the edges are equidistant, given by the field gradient at t = 0. The field at the center of the track is determined by the 42-ps curve of figure 12(a). The full contour is drawn freehand from the center to the end points. Current paths will follow the field lines which are perpendicular to the field contours. Thus, the electrons will diverge from the track in the first 3 μm and last 6 μm from the cathode and converge in between. For this example the maximum field at the cathode was 390 kV/cm, the maximum was reduced to 310 kV/cm for calculations including avalanche multiplication. Some calculations at a track density of 1×10^{18} cm$^{-3}$ show higher fields with than without avalanching included.

Diffusion in one and two dimensions can also be used to obtain some estimate of the error of one-dimensional (1D) as compared with two-dimensional (2D) calculations. The peak density of 2D diffusion from a line source decays at the same rate as the 1D diffusion from a plane source with double the diffusion constant. From this analogy and from the consideration of the previous paragraph, an estimate is made that the 2D calculation would have a maximum field of about one-half that of the 1D calculation. In this context our 1D calculation would have about the same avalanche threshold and charge multiplier as would be obtained in a 2D calculation with double the track density. When it is considered that the track cross-sectional area may be unknown by an order of magnitude, the 1D calculation seems tolerable.

Figure 3 shows close agreement between V_{min}, the minimum voltage for avalanche multiplication as a function of track density, and V_{pp}, the avalanche breakdown of one-sided diodes as a function of doping density, for carrier densities above 10^{16} cm$^{-3}$. The deviation below this density is due to the device width of 20 μm for the track calculation. This agreement may be understood from two considerations. First, in the one-sided diodes, avalanche multiplication is noted at about one-half of V_{pp}. Second, the high field region near the cathode is almost identical in the two calculations, since depletion is essentially complete in each case. However, in the track calculation, there is also a high field region near the anode due to hole depletion (see fig. 7). Therefore, the total voltage is nearly the same in each case.

It was shown in figure 7 that the maximum field was obtained in less than 1 ps. This time is comparable to the time for the ionizing particle to completely form the track. Therefore, an accurate calculation should include the formation of the track with the velocity of the ionizing particle.

The mobilities used in the calculations were characteristic of the 10^{15} cm$^{-3}$ doping level rather than the usually higher track density. This assumption has the effect of increasing the current and thus reducing the time scale of the current pulse. However, carriers were at a saturated velocity for the most part, and saturated velocities are independent of carrier density.

The closeness of the agreement between the 1D calculation result and the measured data shown in figure 5 was unexpected. Various compensating errors may account for this. Campbell et al. estimate their device width as 1 μm but their breakdown voltage was about 7 V. Our calculations show that a 1-μm diode should have breakdown voltage at about 35 V. Although calculated breakdown voltages often exceed measured ones for various reasons, one suspects that their diode is no more than 0.5 μm. If this were so, their charge collection efficiency would be -1.0 instead of -0.5, as they give for zero applied voltage. This was assumed in our figure 5. Our calculations assume that the ionized track was fully formed at zero time, but as seen in the previous paragraph, the maximum field was obtained in a time comparable to the transit time of the ionizing particle. Therefore, the high field at the anode due to depletion of holes would be delayed and more voltage would be available for avalanche multiplication near the cathode. This possible factor of 2 field enhancement would negate the postulated factor of 2 decrease due to the 1D calculations.
CONCLUSIONS

One-dimensional calculations show that avalanche multiplication must be considered in the charge collection in single ionizing events. The calculated increase in charge multiplication as a function of voltage is shown to be in good agreement with the measurements of Campbell et al. Charge multiplication becomes more important as the epitaxial layer decreases in thickness. Since one hardening technique is to reduce field funneling by using thinner epitaxial layers, one must beware of increasing the charge multiplication by a large factor due to avalanching while avoiding a limited multiplication due to funneling.

ACKNOWLEDGMENT

The author would like to express his appreciation to F. B. McLean for many useful discussions.

REFERENCES

