Substituting (A4) and (A5) in (A1) and using (A2) to eliminate the variable \(\hat{\delta}_1 \), (A1) becomes the equation

\[F(N, \hat{\delta}_1) = 0. \]

(A7)

Eliminating in the same manner \(\hat{\delta}_1 \) from (4), the solution of (A7) and (4) gives through (A4) the values \(N_{\text{opt}} \) and \(t_{\text{opt}} \). Also in this case, the problem is well behaved (see Fig. 1) and the solution of the nonlinear system can be obtained quickly by the bisection method.

REFERENCES

An Approximation to the Cumulative Distribution Function of the Magnitude-Squared Coherence Estimate

ALBERT H. NUTTALL AND G. CLIFFORD CARTER

Abstract—We investigate a nonlinear distortion that converts the magnitude-squared coherence estimate to a near-Gaussian random variable. In particular, we present simple approximations for the mean and variance of this nonlinearly distorted magnitude-squared coherence estimate and fit a Gaussian cumulative distribution function over a wide range of parameters.

Manuscript received September 15, 1980; revised January 13, 1981. The authors are with the Naval Underwater Systems Center, New London, CT 06320.

U.S. Government work not protected by U.S. copyright
Probabilistic Statements

In order to deduce the fundamental behavior of the mean and variance of D for $C
eq 0$, we evaluated (3) numerically in [5]. The main results of the numerical investigation are listed below. We find mean

$$\mu_1(N, C) \equiv \text{arc tanh}(\sqrt{C} + B) \quad \text{for} \ C > 0$$

where

$$B = \frac{1 - C^2}{2(N - 1)}$$

and variance

$$\sigma^2(N, C) \equiv \frac{1}{2(N - 1)} \quad \text{for} \ C > 0.$$ \hfill (9)

The imprecise qualifier $C > 0$ reflects the fact that the probabilistic behavior of $\hat{C} = \text{arc tanh}(\sqrt{C} + B)$ and D is distinctly different for $C = 0$ versus $C > 0$; for example, compare (6) and (9). In particular, as N becomes large, (9) becomes a better approximation for smaller C. The precise region where (7)–(9) are valid will become clear in later plots. The result (9) is a slight modification of Jenkins and Watts [4] that better fits the calculated values of variance and the slope of the CDF plots. Its independence of true MSC value C is striking and convenient.

Probabilistic Statements

If D is nearly a Gaussian random variable with mean $\mu_1(N, C)$ and variance $\sigma^2(N, C)$, then the CDF of D, i.e., the probability that D is less than some threshold T, is given by the approximation

$$P_2(T) = \text{Prob}\{D < T\} \approx \Phi\left(\frac{T - \mu_1}{\sigma}\right)$$

where

$$\Phi(y) = \int_{-\infty}^{y} \frac{du}{\sqrt{2\pi}} \exp(-u^2/2)$$

is the CDF for a zero-mean unit-variance Gaussian random variable. A plot of (10) on normal probability paper, with T as the linear abscissa, yields a straight line with abscissa-intercept μ_1 and slope $1/\sigma$, since the nonlinear transformation to plot ordinates in this case is the inverse function $\Phi^{-1}(\)$.

The exact CDF of D is given by

$$P_2(T) = \text{Prob}\{D < T\} = \text{Prob}\{\text{arc tanh}(\sqrt{C}) < T\}$$

$$= \text{Prob}\{\hat{C} < \text{tanh}^2(T)\} = P_1(\text{tanh}^2(T))$$

where we employed (12) and defined P_1 as the CDF of \hat{C}

$$P_1(A) = \text{Prob}\{\hat{C} < A\} = \int_0^A dx \ p_1(x).$$

Thus, we can relate CDF P_2 to the known CDF P_1 given in [1]. Computer programs for the exact evaluation of (12) and (13) are given in [5].

The availability of approximation (10) for the CDF of D enables us to give an approximation to the CDF P_1 of \hat{C}, namely

$$\sigma^2(N, 0) = \mu_2(N, 0) - \mu_1^2(N, 0) \sim \frac{1 - \pi/4}{N - 1} \quad \text{as} \ N \to \infty.$$ \hfill (6)

Plots

Before embarking on the plots of exact CDF P_1 of distorted random variable \hat{D}, as given by (12), we plot the exact CDF P_1 in (13) of the original random variable \hat{C}, as given by [1]. A plot on normal probability paper for $N = 16$ is given in Fig. 1. Plots for other values of N are given in [5]. In this figure each dotted straight line corresponds to a Gaussian random variable with mean and variance as derived for MSC estimate \hat{C} in [6, p. 20]. The discrepancy with the exact CDF (in solid lines) indicates that \hat{C} is not well approximated by a Gaussian random variable, especially for small N, and for the small and large values of C and the extreme values of probability near 0.01 and 0.99.

Plots of the exact CDF P_2 of D, given by (12), are presented in Figs. 2–4 for $N = 16, 32$, and 64. Dotted straight lines corresponding to a Gaussian random variable satisfying (7)–(10) have been drawn for every C and N value being considered; however, they have been overdrawn by the exact CDF (12) in some cases and are not visible. The agreement between exact and Gaussian CDF’s is extremely good except for very low values of C and N. Plots for additional values of N are given in [5]; however, for $N \geq 128$ the agreement between the approximation and the exact result are so close as to be overlapping for the range of parameters considered here.

Notice that the curves in Figs. 2–4 are approximately parallel
an improved nonlinear distortion which utilizes this information is possible which will convert the MSC estimate to more nearly a Gaussian random variable over a wider range of parameters N, C, and P. Evaluation of confidence limits requires the inversion of this nonlinearity; analytic inversion is not possible, but a numerical procedure converges rapidly. This more complicated procedure is the subject of a report by the first author [5].

REFERENCES

Intersection Filters for General Decimation/Interpolation

I. PAUL AND J. W. WOODS

Abstract—Optimum multiple stopband FIR filters for decimation or interpolation by integer factors have been presented in the literature. In this correspondence we extend these results to the case of general decimation/interpolation by rational factors. The resulting filters are called intersection filters because their stopbands are intersections of the stopbands required in the case of integer factors. Significant improvement in stopband attenuation is found in many cases for band-limited signals.

I. INTRODUCTION: THE EFFICIENT INTERPOLATOR

The use of FIR digital filters in interpolation is well known and has been well reported in the literature [1]–[3]. In these papers the frequency domain representation of the interpolation process is used to designate appropriate pass and stopbands for the FIR digital filters to be designed. In our analysis we retain the same approach.

Let us start with the initial sequence $x(n)$ and interpolate it by a rational factor $R = L/M$, where L and M are positive integers. Let the interpolated sequence be $y(n)$. Let $X(e^{j\omega})$ and $Y(e^{j\omega})$ be the Fourier transforms of $x(n)$ and $y(n)$, respectively. If we assume that $x(n)$ is band limited to ω_L, i.e., $X(e^{j\omega}) = 0$ for $\omega_L < |\omega| < \pi$, then $X(e^{j\omega})$ will have a form similar to that shown in Fig. 1(a) (specialized to $\omega_L = \pi/2$). The standard method for interpolating a sequence $x(n)$ by a rational factor consists of interpolating $x(n)$ by the integer factor L and then decimating the resulting sequence $w(n)$ by the integer factor M (schematically shown in Fig. 2). $W(e^{j\omega})$, the Fourier transform of the intermediate sequence $w(n)$, is of the form shown in Fig. 1(b) (with $L = 9$ in this example). To specify the filter $H(e^{j\omega})$ (Fig. 2) we need to define two parameters: the highest frequency ω_L in $X(e^{j\omega})$ which has to

$$0096-3518/81/0800-0934$0.75 ©1981 IEEE