Volumetric Pattern Analysis of Airborne Antennas

C. L. Yu, Member, IEEE, W. D. Burns, Member, IEEE, and M. C. Gilreath

Abstract—By blending together the roll and elevation plane high-frequency solutions, a very efficient technique has been developed for the volumetric pattern analysis of antennas mounted on the fuselage of a generalized aircraft. The fuselage is simulated by an infinitely long, perfectly conducting, elliptic cylinder in cross section and a composite elliptic cylinder in profile. The wings, nose section, stabilizers, and landing-gear doors may be modeled by finite flat or bent plates. Good agreement with accurate scale model measurements has been obtained for a variety of airborne antenna problems.

I. INTRODUCTION

If modern aircraft antennas are to function properly, the antenna pattern must meet certain system requirements. The conventional design procedure for an antenna on a particular aircraft has been to evaluate the performance of a candidate antenna system based on numerous scale-model measurements. This approach requires a great deal of engineering time and expense. The numerical technique presented in this paper alleviates the problems associated with measurements for fuselage-mounted antennas by providing an efficient means of accurately calculating volumetric patterns.

Since the majority of airborne antennas operate above 100 MHz, a high-frequency approach is appropriate. As a result, the geometrical theory of diffraction (GTD) is applied to accurately calculate volumetric patterns.

Before describing the refinements developed in this paper, let us consider the mechanics of the GTD approach as it has been previously applied to aircraft antenna problems. First, the aircraft structure is broken up into simpler parts in such a way that these parts simulate the essential character associated with the aircraft's scattered fields. These parts are individually analyzed and later combined to simulate the complete aircraft. In the roll plane pattern solution of [3], the wings were treated as finite flat plates. Therein, it was shown that the GTD could successfully predict the total field for an antenna in the presence of a finite flat plate simply by superimposing the incident, reflected, and various edge diffracted fields. A more general roll plane model was used in [4], where the flat plate wing and elliptic cylinder fuselage models were combined using the GTD approach. The dominant rays included in that solution are illustrated in Fig. 1. Note that in this case the wing is illuminated by energy which flows around the fuselage. This modified illumination was analyzed in terms of the geodesic paths by which energy propagates from the antenna around the cylinder, diffracts tangentially from the curved surface, and strikes various portions of the wing. The accuracy of this model was verified in [4].

An elevation plane analysis was also presented in [4], in which the fuselage profile was simulated by a composite elliptic cylinder. This model was not satisfactory in that the nose section and vertical stabilizer were neglected; thus, good agreement with measurements was not obtained in the fore and aft directions. The correction of this shortcoming and the development of a volumetric pattern solution are presented in this paper.

II. FUSELAGE SIMULATION

Using the GTD solution approach, let us consider the radiation properties of antennas mounted on fuselage-shaped structures, neglecting the wings, stabilizers, etc. Since the complete volumetric pattern is desired, the three-dimensional nature of the fuselage must be taken into account. Thus a single infinite cylinder model, such as applied in [3], [4], cannot accurately simulate a fuselage for all possible radiation angles, especially those near the cylinder axis. To overcome this limitation, a complete analysis was developed in [5] for antennas mounted on surfaces of revolution. Using this model, the three-dimensional nature of the fuselage was accurately taken into account. Even though this solution provided the desired properties, it is a very complex formulation in that the geodesic paths had to be found by means of a numerical solution. A stored set of geodesic test curves was generated from which one could predict the proper geodesic paths which
diffraction tangentially in the desired radiation direction. However, the storage space and manipulation times associated with that data set were excessive, which made the direct solution for this structure impractical.

Since the surface of revolution model did successfully simulate fuselage structures, its properties were investigated with a view toward determining the dominant geodesic trajectories for radiation directions in the shadow region of the antenna. It was found that for such electrically large structures and antennas mounted away from the poles of the structure (i.e., the poles associated with the surface of revolution), there were only four dominant rays. These four rays are shown in Fig. 2. Note that two rays propagate around the cross section (rays B and C) and two along the profile (rays A and D). These four rays play a significant role in certain elevation plane pattern calculations. For example, the elevation plane pattern of an axial slot mounted on a prolate spheroid is shown in Fig. 3(a) using the two-dimensional solution of [4]. Note that this solution only considers rays which propagate along the profile (rays A and D in Fig. 2) and obviously does not predict the back lobe. The prolate spheroid result (using all four rays) for the same configuration is shown in Fig. 3(b). In this case, the calculated and measured results are in good agreement. This indicates that the two rays which propagate around the fuselage also contribute significantly in the elevation plane. Consequently, this effect must be included to properly simulate the radiation properties for antennas mounted on fuselage-shaped structures.

The two rays which propagate around the cross section are quite similar to the ones which propagate around the roll plane model in [4]; whereas, the two rays which propagate along the profile are similar to those in the elevation plane model. This correspondence is depicted in Fig. 2. With this similarity in mind, numerous calculated patterns were compared with measured results for a wide range of radiation directions to ascertain where the individual roll and elevation plane models failed. It was determined that the individual solutions failed, for all practical purposes, in different sectors of the volumetric pattern. Specifically, the roll plane model (an elliptic cylinder whose cross section simulates the fuselage cross section at the antenna location) was found to provide accurate results everywhere except near the fore and aft sectors (i.e., within 10° to 20° of the roll plane cylinder axis). On the other hand, these sectors were very adequately analyzed using the elevation fuselage model, which is a composite elliptic cylinder whose cross section simulates the fuselage profile at the antenna location. Consequently, a set of regional solutions was developed which uses either roll or elevation or both models to compute the patterns within a given region. A composite drawing of these regions is shown in Fig. 4. Note that the angle α is chosen such that the solutions tend to blend smoothly together across the regional boundaries. Based on numerous comparisons with scale model measurements, the angle α should be set to a value between 10° and 20°.

To illustrate the validity of this composite solution, the elevation pattern of an axial slot mounted on a prolate spheroid was calculated and compared with a measured result as shown in Fig. 3(c). It is clear from this comparison that the composite solution does predict the backlobe. The complete validity of this composite fuselage solution will be demonstrated later in terms of various pattern comparisons with scale-model measurements of actual aircraft structures.
III. AIRCRAFT SIMULATION

Now that the fuselage may be adequately analyzed in an efficient manner, a simulation model for the complete aircraft can be developed using the GTD solution approach. As demonstrated in [3], [4], the wings and horizontal stabilizers are adequately represented by flat plates. Further, it is shown that these structures are illuminated by energy which flows around the fuselage cross section. Consequently, the wings and horizontal stabilizers must be added to the roll plane model of the fuselage as shown in Fig. 5(a). Note that this model is identical to that analyzed previously in [4]. In terms of the complete volumetric pattern, the scattered fields from the wings and horizontal stabilizers are included in all radiation directions; whereas, the roll plane fuselage fields are only included in the regions indicated in Fig. 4.

The elevation plane model is used to simulate the finite length effects of the fuselage. Since the nose section and vertical stabilizer are illuminated by energy which flows along the fuselage profile, these structures must be added to the elevation plane model. Before the nose section can be adequately simulated, a practical representation for the radome must be found. A comprehensive study of radomes and their effect on the radiation patterns of antennas mounted in their vicinity is far too complex to be considered here. In fact, the analysis of the scattering properties of radomes and the structures mounted under them is an interesting and relevant problem worthy of investigation. For simplicity it is assumed here that the radome is perfectly transparent. This is not an overt assumption in that radomes are designed to be transparent at least at certain frequencies. This leaves a short blunt-looking nose section which extends out from the front of the aircraft. Various complex structures were investigated to simulate this section, all of which led to very inefficient computations. Further, it was found that the nose section normally has little effect on the resulting pattern. Consequently, the nose section for simplicity is simulated by a finite flat plate as shown in Fig. 5(b). This flat plate simply models the major dimensions of the nose section as illustrated in Fig. 6 in terms of a Boeing 737 simulation.

Since many airborne antennas are mounted on or near the fuselage center line, the vertical stabilizer must be simulated by a structure with finite thickness. This thickness is important in that it tends to shadow the direct field from the antenna for aft radiation directions. In order to approximate this effect and maintain the finite flat plate representation of structures that are attached to the fuselage, the vertical stabilizer is modeled by a bent plate as shown in Fig. 5(b). The significant features associated with this simulation are that the leading edge and thickness of bent plate accurately approximate those features of the actual vertical stabilizer. Such a simulation for the Boeing 737 is shown in Fig. 6. Since this
To summarize this solution, the fuselage scattered fields are
analyzed in terms of the composite approach presented in
the previous section. The wings, stabilizers, and nose section
are included for all radiation directions. Superimposing all of
these scattered field terms is not unduly time consuming in
that only a few contribute significantly in a given radiation
direction. A complete computer program has been written
which takes advantage of this feature and was used to provide
the calculated results presented in the next section.

IV. RESULTS

To illustrate the validity of this numerical solution in pre-
dicting the radiation patterns of fuselage-mounted antennas,
it is applied to several airborne antenna problems. In each case
a calculated pattern is compared with a measured result ob-
tained using an accurate scale model of the antenna and air-
craft under investigation.

The elevation plane radiation pattern of a circumferential
waveguide mounted on top of a KC-135 aircraft is shown in
Fig. 7. The K_0-band waveguide aperture fields are simulated by
an array of 15 infinitesimal elements as discussed in [4]. As
shown in Fig. 7, the agreement between the calculated and
measured results is very good. Further, the discrepancy dis-
played in the previous solution [4] in the aft sector no longer
exists, since the vertical stabilizer is included in the present
simulation. Similar agreement was obtained for the axial wave-
guide and monopole patterns as presented in [6].

The computer model used to simulate the Boeing 737 air-
craft for an antenna mounted at Station 220 above the cockpit
is illustrated in Fig. 6. Recall that the ellipses used to simulate
the aircraft should model the surface curvature as accurately
as possible at the antenna location. Thus the roll model ellipse
as shown in the front view (refer to Fig. 6(a)) is a best fit curve
to the aircraft cross section at Station 220 and not the major
cross section of the aircraft. Various elevation and azimuth
radiation patterns for a $\lambda/4$ monopole mounted on this com-
puter model have been compared with experimental results in
[6]. In each case, the calculated results were found to be in
very good agreement with measurements. In order to illustrate
the overall accuracy, the complete volumetric patterns in
terms of the directive gain are presented in Fig. 8. The various
directive gain regions are indicated by the color code. For
example, the red color indicates the region of space where the
gain level is greater than 0 dB. In other words, this is a region
where the radiation intensity of the antenna of interest is
greater than that of an isotropic point source. The yellow
color indicates the region where the radiation intensity is
greater than -3 dB but less than 0 dB relative to isotropic.
Similarly, the green, blue, purple, dark blue, and gray or black
stand for -6 dB, -10 dB, -15 dB, -20 dB, and less than
-20 dB levels in gain, respectively. Good agreement is ob-
tained for each of the gain levels. Note that the theta and phi
variables used in the pattern plots are defined in Fig. 4.

The experimental results obtained for the 737 aircraft were
measured in an RF anechoic chamber using the one-eleventh
cube scale model shown in Fig. 8. An incremental magnetic tape
recorder was used to record the pattern data every 2° in both
theta and phi directions. Based on the directivity calculations,
this increment is sufficient to provide accurate pattern resolu-
tion. Experimental data obtained for other antenna locations
and types on the Boeing 737 are presented in [7].

To further demonstrate the versatility of this solution, the
radiation patterns for the Lindberg crossed-slot antenna
mounted at Station 470 along the top center line of a KC-135
aircraft have been analyzed. The Lindberg antenna as discussed
in [8] is a UHF antenna designed for use in a satellite-to-air-
craft communications link. Using our computer model, the
patterns were computed for a right circularly polarized Lind-
berg antenna. Various calculated patterns along with the
measured results as taken from [8] are presented in Fig. 9. In
each case, the E_θ pattern corresponds to the vertical com-
ponent and E_ϕ to the horizontal component. The gain level in
each case is adjusted to compare with measurements. Note
that all patterns are computed at a frequency of 250 MHz and
0.78 \lambda long slots are considered. Again, good agreement is
obtained.

V. CONCLUSIONS

The solution developed in this paper combines the roll and
elevation plane model analyses to predict the complete vol-
umetric pattern for fuselage-mounted antennas. The signifi-
cance of this approach is that it provides an efficient and
accurate solution to this relevant problem. For example, it can
compute a conical pattern in approximately 30 s on a CDC-
6600 digital computer. As a result, an antenna designer can
use this numerical solution to quickly examine various config-
urations in order to evaluate various candidate designs and
locations based on a set of pattern constraints. This design
procedure has been applied to locate and design a microwave
landing system antenna for application on the Boeing 737
aircraft. The results of this study have been presented in [6].

This analysis is based on the geometrical theory of diffrac-
tion solution approach which is a high-frequency technique.
The lower frequency limit of its application is approximately
100 MHz, which is dictated by the requirement that the width
of the wing tip be at least a quarter wavelength. The upper
frequency limit is dependent on how well the numerical solu-
tion model simulates the dominant scattering mechanisms of
the actual aircraft. It has been successfully applied for frequen-
cies as high as 35 GHz. One other limitation of the analysis is
that the antenna and various scattering centers must be sepa-
rated by at least a wavelength. This implies that the antenna
cannot be located near an attached plate. If the previous
constraints are satisfied, this solution should provide accur-
cacies at least equivalent to those obtained using scale model
measurements.
Fig. 8. Scale model of Boeing 737 and volumetric gain patterns.
Fig. 9. Radiation patterns of Lindberg crossed-slot antenna mounted at Station 470 on KC-135 aircraft. (a) Roll plane pattern (\(E_\theta\)). (b) Roll plane pattern (\(E_\phi\)). (c) Elevation plane pattern (\(E_\theta\)). (d) Elevation plane pattern (\(E_\phi\)). (e) Azimuth plane pattern (\(E_\theta\)). (f) Azimuth plane pattern (\(E_\phi\)).

There are two additional features of this analysis, useful to the antenna designer, which have not been discussed. First, this solution provides phase data with no additional effort; yet, accurate phase data generated using a scale-model measurement approach is very difficult. Additionally, this solution is based on the radiation patterns of the three infinitesimal antennas (monopole, axial and circumferential slots). As a result, one can analyze an arbitrary fuselage-mounted antenna simply by performing a numerical integration over the equivalent aperture currents. In a mathematical sense, this far field pattern solution provides a high-frequency asymptotic Green's function for fuselage-mounted airborne antennas. This point has been illustrated in the pattern results presented in this paper in terms of the \(K_a\)-band waveguide and Lindberg antennas. In a similar manner, this solution can be applied to analyze the radiation patterns of arrays using the superposition principle.

REFERENCES