Test Results of Total Ionizing Dose Conducted at the Jet Propulsion Laboratory

Rosa M. Rivas, Allan H. Johnston, Tetsuo F. Miyahira, Bernard G. Rax, Michael D. Wiedeman

Abstract—This paper reports recent Total Ionizing Dose (TID) test results obtained at JPL. Several device samples were analyzed exhibiting significant failure levels and ELDRS effects under biased and unbiased condition.

Index Terms—Bipolar, Complementary Metal Oxide Semiconductors (CMOS), Enhanced Low Dose Rate Sensitivity (ELDRS), High Dose Level (HDL), Low Dose Level (LDL), and Total Ionizing Dose (TID)

I. INTRODUCTION

This paper reports recent Total Ionizing Dose (TID) test results obtained at the Jet Propulsion Laboratory (JPL). The results discussed in this paper refer to testing performed during the past year. These microelectronic devices were candidates for applications in space missions. Two of these part types are built on bulk CMOS processes. The other parts are fabricated on conventional linear bipolar processes which make them susceptible to enhanced low dose rate sensitivity (ELDRS) [1]-[5]. In addition, unbiased bipolar devices are often more sensitive to radiation damage at low dose rates than biased devices [6]. The objective in most cases is to determine whether the biased or unbiased condition represents the worst-case condition during irradiation and to determine if these devices are susceptible to ELDRS. The results described below characterize these devices for use in a wide range of dose environments of space. Results from total dose characterization tests of six specific device types from different manufacturers are reported. Table I provides the part number, die manufacturer and date codes of tested part types. These devices were acquired directly from the manufacturer for flight purposes.

Manuscript received July 20, 2004. The research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic Space Administration (NASA), under the NASA Electronic Parts and Packaging Program, Code AE.

Rosa M. Rivas is with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA (telephone: 818-393-6895; fax: 818-393-4559; e-mail: rosa.m.rivas@jpl.nasa.gov).

Allan H. Johnston is with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA (telephone: 818-354-6425; fax: 818-393-4559; e-mail: allan.h.johnston@jpl.nasa.gov).

Tetsuo F. Miyahira is with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA (telephone: 818-354-2908; fax: 818-393-4559; e-mail: tetsuo.f.miyahira@jpl.nasa.gov).

Bernard G. Rax is with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA (telephone: 818-393-4559; fax: 818-393-4559; e-mail: bernard.g.rax@jpl.nasa.gov).

Michael D. Wiedeman (retired) was with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA (telephone: 818-354-1830, e-mail: michael.d.wiedeman@jpl.nasa.gov).

II. SETUP AND APPROACH

A. Total Dose Facility

Total dose irradiations for the AD823, LM136-2.5, LTC1417, MC35072, DG304A, and the AD590 were performed at the high and low dose rate (HDR and LDR) Co-60 range sources at the Jet Propulsion Laboratory, Pasadena, CA. These facilities each have a Shepherd Co-60 irradiator, which irradiates into an open vault. High dose rate exposure for the LTC1417 and AD823 was 25 rad(Si)/s. Low dose rate exposures for the AD823, and LM136-2.5 device samples were 0.005 rad(Si)/s. The gamma ray tests corresponding to the AD590 devices were done at a dose rate of 0.005 rad(Si)/s, in a series of steps up to a total dose of 60 krad(Si). Samples of the MC35072 were tested in both biased and unbiased condition at low dose rates of 0.01 rad(Si)/s. The DG304A devices were irradiated under biased conditions at high dose rate using specific cumulative dose levels in order to obtain subsequent parametric measurements.

B. Electrical Tests

The AD823, LM136-2.5 and MC35072 electrical tests were performed on the Eagle ETS-300 mixed-signal automated test system. The LTC1417 devices were electrically tested at successive dose levels on a LTS2020 mixed signal automated test system. Samples of the AD590 were mounted on a temperature-controlled plate (part of a Melles-Griot DTC 101 temperature controller) that established the device temperature. The temperature sensitivity was determined by making electrical measurements at three temperatures: 10°C, 30°C, and 50°C. An Omega MDSS 41TC thermometer was used to monitor the device temperature during electrical measurements. The Eagle test system was utilized to perform the electrical measurements on the DG304.

C. Procedure

The LM136-2.5 device samples were irradiated in two separate groups. One group was irradiated without bias (all pins grounded), while the other group was irradiated with a nominal forward current of 1 mA. The voltage across the device was nominally 2.5 V for the biased samples. Sixteen AD823 device samples were irradiated in four separate groups.

Two parts in biased conditions and two in unbiased conditions
TABLE I
CLASSIFICATION OF TESTED PARTS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Generic</th>
<th>Description</th>
<th>Die Manufacturer</th>
<th>Date Code</th>
<th>Technology</th>
<th>Package</th>
<th>Failure Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD823AR</td>
<td>AD823</td>
<td>Dual, 16 MHz, Rail-to-Rail FET</td>
<td>Analog Devices</td>
<td>Non Flight</td>
<td>Bipolar</td>
<td>8 lead SOIC (SO-8)</td>
<td>Offset voltage, Input offset current ± Input Bias Current</td>
</tr>
<tr>
<td>8E501-K001-RB</td>
<td>LM136-2.5</td>
<td>Voltage Reference Diode</td>
<td>National</td>
<td>C1-R11</td>
<td>Bipolar</td>
<td>5 parts: 14 pin DIP by Interpoint 10 parts TO-46 COTS</td>
<td>Reference voltage, Dynamic impedance</td>
</tr>
<tr>
<td>LTC1417AGC</td>
<td>LTC1417</td>
<td>Analog to Digital Converter</td>
<td>Linear Technology</td>
<td>0240</td>
<td>CMOS</td>
<td>8 pin SOIC</td>
<td>Positive supply current, Input Integral Non Linearity</td>
</tr>
<tr>
<td>8E505-K001-RB</td>
<td>MC35072</td>
<td>Operational Amplifier</td>
<td>Motorola</td>
<td>B1-R13</td>
<td>Bipolar</td>
<td>14 pin DIP</td>
<td>Offset voltage under unbiased conditions</td>
</tr>
<tr>
<td>5962-8757104XA</td>
<td>AD590</td>
<td>Temperature Transducer</td>
<td>Analog Devices</td>
<td>0145</td>
<td>Bipolar</td>
<td>1 part: TO-52 metal can 16 parts: 2-lead, 0.087 in ceramic flat package</td>
<td>Output current under unbiased conditions “Off” leakage current, On resistance, Switching time</td>
</tr>
<tr>
<td>JMS510/11605B IC</td>
<td>DG304</td>
<td>Dual Analog Switch</td>
<td>Siliconix</td>
<td>9739</td>
<td>CMOS</td>
<td>10 pin TO-5</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II.
IRRADIATED PARTS UNDER BIAS CONDITIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Bias Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD823</td>
<td>Op-Amp</td>
<td>V = 5V & 15V, V = -5V & -15V, Vcm = 0V, voltage follower</td>
</tr>
<tr>
<td>LM136-2.5</td>
<td>Voltage reference</td>
<td>Ic = 1mA, 1mA, 400uA & 1mA, Vref = 2.5V</td>
</tr>
<tr>
<td>LTC1417</td>
<td>A/D Converter</td>
<td>VDD = +5V, VSS = -5V</td>
</tr>
<tr>
<td>MC35072</td>
<td>Op-Amp</td>
<td>V = 5V, V = 5V & 15V, V = -5V & -15V</td>
</tr>
<tr>
<td>AD590</td>
<td>Temperature transducer</td>
<td>VCC = 5V & VCC = 15V</td>
</tr>
<tr>
<td>DG304</td>
<td>Analog switch</td>
<td>VDD = 12V, VSS = -12V</td>
</tr>
</tbody>
</table>

III. TESTS RESULTS

A. AD823

The AD823AR dual, 16 MHz, rail to rail FET input amplifier exhibited some susceptibility to ELDRS. In general, all parameters corresponding to these samples revealed moderate degradation. However, no device failed the manufacturer’s specification limit at any of the stated levels. All biased and unbiased devices exposed to low dose irradiation continued to meet specification to 16 krad. Effects with the change in input bias current are observed in Figure 1, which is roughly twice as large for the unbiased group than for the biased group. Extreme changes in the input offset voltage under biased conditions for both flight and non flight parts (illustrated in Fig. 2) exceeded the manufacturer’s specs. Note that only selected plots showing the device outstanding behavior are observed in the figure for simplicity purposes.
Fig. 1. AD823 rail to rail FET input amplifier exhibits effects with the change in positive input bias current versus total dose after low dose irradiation exposure (biased condition is ±15V).

Fig. 2. The AD823 amplifier reveals extreme changes in input offset voltage versus total dose under ±15V biased conditions. Both flight and non flight parts failed parametric specs.

B. LM136-2.5

This LM136-2.5 voltage reference diode exhibited electrical specifications that allow the voltage to be 2.5 ± 0.04 V. Thus, small changes in voltage after irradiation were generally well within the specification limit (nominally ± 1.6%). However, the specifications also included a long-term stability condition, typically 20 ppm, which was about three orders of magnitude smaller than the initial voltage tolerance. The radiation degradation was considerably larger than the long-term stability specification, which would affect applications where the circuit had been adjusted for a specific voltage from the LM136, relying on long-term stability. The test results were analyzed, evaluating changes in each parameter at various radiation levels (from 2krad to 20krad) and derating the results by the mean value plus three times the standard deviation. Parametric degradation was observed in voltage reference and dynamic impedance (Figures 3 & 4, respectively), under both biased and unbiased conditions. Note that in Fig. 3, the device behavior of eight parts is observed and in Fig. 4, the plots of five devices are shown for simplicity purposes.

Fig. 3. LM136-2.5 voltage reference diode exhibits changes in voltage reference versus total dose for both biased condition at 10mA and unbiased condition.

Fig. 4. The LM136-2.5 device shows changes in dynamic impedance versus total dose under biased and unbiased conditions.

C. LTC1417

The Linear Technology LTC1417 analog to digital converter exhibited severe parametric degradation and failure at levels greater than 30 krad(Si), with significant increase in all parameters especially integral nonlinearity (INL) as shown in Figure 5, differential nonlinearity (DNL), Bipolar Offset, and Bipolar Gain Error. All device parameters remained within the manufacturer’s pre-radiation specification for test levels up to and including 30 krad (Si). The only parameters showing any significant changes were the positive and negative supply currents, \(I_{DD} \) (Fig. 6) and \(I_{SS} \), increasing to 1mA and 100uA, respectively. As a result of these increases in supply current, modest increases in both bipolar and unipolar power dissipation were observed.
Fig. 5. The LTC1417 14-bit serial analog to digital converter reveals changes in integral nonlinearity (INL) versus total dose under biased conditions.

Fig. 6. LTC1417 device exhibits a significant positive supply current change increasing to 1mA under biased conditions.

Fig. 7. The MC35072 operational amplifier in unbiased condition exhibits parametric failures in the (B) sides of input offset voltage.

D. MC35072

The Motorola MC35072 operational amplifier devices performed within specification (in both biased and unbiased conditions) to 20 krad(Si). At 30 krad(Si), two of the zero biased test devices were exhibiting parametric failures in the (B) sides of the devices for input offset voltage at supply voltages of ±5V and ±15V. Parametric failure for input offset voltage was only seen for the zero biased case, no failures were seen in the biased units. All of the failures seen for input offset voltage were marginal. Figure 7 illustrates the failing input offset voltage marginally at 30 krad when devices were biased with ±15V. Similar behavior applies for the ±5V biased devices. All other parameters meet specification to the highest level tested to 30 krad(Si).

E. AD590

The AD590 devices irradiated with an applied bias voltage of 5 volts and 15 volts were far less affected by radiation exposure than the unbiased samples. Both of the biased groups had their output currents reduced by approximately 2 to 5% at the maximum radiation level tested of 60 krad(Si). Much larger changes occurred for the group of devices that was unbiased during irradiation. Figure 8 shows an example of device current degradation for parts that were irradiated unbiased (worst case) and measured at 30°C. Initially, only small changes occurred with a nearly linear dependence on total dose. The response became highly nonlinear above approximately 15 krad(Si). The transition between linear and nonlinear behavior depends on the device applied voltage, occurring at lower total dose levels for low power supply voltages. The transition dose varied somewhat among the five samples in the test group. For Vcc = 5 V the transition region started between 15 and 22 krad(Si) for the five parts.

Corresponding to the devices that were unbiased during irradiation, the slope of the temperature sensitivity became highly nonlinear at about the same total dose level where large changes in the 30 °C temperature value occurred. Figure 9 shows the output current for the three temperatures that were used at all radiation levels for a typical device that was irradiated without bias. The slope is particularly nonlinear between approximately 15 and 30 krad(Si). The slope of the devices that were irradiated with bias applied remained nearly the same after irradiation. However, some evidence of nonlinearity was seen at the higher total dose levels.
Fig. 8. The AD590 temperature transducers exhibited output current degradation for parts irradiated under unbiased conditions and measured at 30°C. The transition region started between 15 and 22 krad(Si).

![Graph showing output current vs dose for different temperatures](image)

Fig. 9. This AD590 device exhibits outstanding changes in the output current for the three temperatures utilized in all radiation levels for a typical device under unbiased irradiation conditions.

F. DG304

This DG304 exhibited large changes in three key parameters: – “off” leakage current, on resistance, and switching time – after irradiation at high dose rate (Figures 10, 11 and 12, respectively). The leakage current of this switch in the “off” condition increased after irradiation (Figure 10). The specification limit for this parameter is 100nA. Very low total dose levels cause this leakage current to increase by about four orders of magnitude above the specification limit at 5 krad(Si). This degradation is caused by subthreshold conduction in the n-channel transistors. Data for the unirradiated control device is also shown in the figure.

In addition, preliminary results corresponding to this DG304 devices with an effective low dose rate of 1.6krad(Si) exhibited changes in the parameters of drain leakage current, on resistance and switching time (Figures 13, 14, and 15, respectively). These devices were irradiated to 2.5 krad(Si) and annealed for 1, 2 and 24 hours. Devices annealed at 48hr period exhibited increasing conditions in all three key parameters. The large leakage current observed under high dose rate conditions recovered. This was expected because the hole traps that produced negative threshold shift at high dose rate anneal, leaving a net positive threshold shift after high-temperature annealing and the on resistance increased. This effect was consistent with expected behavior where interface traps “stretch” the subthreshold conduction characteristics, increasing the subthreshold slope. The switching time continued to increase with annealing time, requiring a correction factor to adjust for the expected increase after 168 hours.

![Graph showing change in ID on+ vs HDR total dose](image)

Fig. 10. The DG304 devices exhibited change in drain leakage current for the G2 series of devices during irradiation at high dose rate.

![Graph showing change in RDS(on) vs total dose](image)

Fig. 11. The DG304 revealed change in RDS(on) for the G2 series of devices during irradiation at high dose rate.

![Graph showing change in time on(Ohms) vs total dose](image)

Fig. 12. The DG304 demonstrated change in (on) switching time for the G2 series of devices after irradiation at high dose rate.
IV. DISCUSSION

The devices tested with the low dose rate test condition exhibited improved low dose rate sensitivity resulting in more parametric degradation than the high dose rate case. The worst case represented by the biased or unbiased condition was dependent on the device type and its specific parameter. The AD823 device samples tests have been performed for the MRO program. The LM136 and the AD590 were fabricated with bipolar linear integrated circuit processes which are sensitive to enhanced damage at low dose rate (ELDRS).

The LTC1417 device samples were tested to characterize this device for use in ionizing dose environments of space and to determine Radiation Lot Acceptance Testing (RLAT) acceptance. The MC35072 tests were performed to characterize an element in a hybrid DC/DC converter design. However, due to limited sample size, it was necessary to test to higher TID levels to obtain statistical data to ensure 99/90 confidences that the flight lot of parts meet the TID requirement. The DG304 data reported is considered preliminary since the 168 hr time interval was not achieved due to malfunctions after the 48 hr period.

V. CONCLUSION

The radiation results described in this paper are an expansion of previous efforts to characterized standard bipolar and CMOS devices for total dose environments. These results provide the essential information to determine whether biased or unbiased condition yields the worst case scenario during irradiation. Significant TID effects for CMOS devices under bias conditions were observed. Bipolar devices under unbiased conditions exhibited more damage than the bias case. For instance the AD590 output current degradation failure occurred only for the unbiased devices. The JFET input bias current exhibited significantly higher levels of degradation for unbiased units. In addition, all bipolar devices demonstrated ELDRS susceptibility. Thus, the JFET input op-amp exhibited moderate degradation in the input bias current parameter up to 25 krad(Si) with significant increases in input bias current for TID levels greater than 30 krad(Si). This data is intended to be used as a model to improve designs in space applications.

REFERENCES