Assessing Reliability Using Developmental and Operational Test Data

Martin Wayne, AMSAA
Mohammad Modarres, PhD, University of Maryland

Key Words: Bayesian reliability growth, reliability growth projection, reliability demonstration, data combination

SUMMARY & CONCLUSIONS

This paper presents a new reliability assessment model that allows for the combination of developmental and operational data from different test events for continuously operating systems. The model offers an alternative to traditional reliability assessment using a single operational test only. Reliability degradation between developmental and operational testing is explicitly modeled through the use of a nuisance scale parameter, and a complete inference framework is provided via the posterior distribution.

The approach serves as a natural extension of the current approach to reliability growth and demonstration used in the Defense industry while explicitly modeling the additional uncertainty that exists in the problem. Analogous Operating Characteristic (OC) curve quantities are developed from the posterior distribution. Use of these results will generally lead to tighter uncertainty intervals and result in lower reliability design goals. This approach can help to directly reduce the programmatic risks that may exist due to reliability demonstration in a constrained environment with operational test data alone.

1 INTRODUCTION

Reliability growth programs have been widely studied for many years, and they continue to be an area of great interest. Recent work from the Defense Science Board Task Force [1] cited poor reliability as a main contributor to the significant increase in the number of systems that are rated as not operationally suitable. A major recommendation from the task force was to implement a robust reliability growth program, including periodic reporting on reliability growth program progress. In response to this recommendation, the U.S. Department of Defense [2] and the U.S. Army [3] have recently implemented guidance to address this issue. These documents establish comprehensive reliability programs, including Design for Reliability (DFR) initiatives along with a reliability growth strategy. These advances highlight not only the importance of achieving reliability in modern defense systems, but also the inherent connection between DFR and traditional system-level reliability growth.

System level reliability growth programs typically end with a reliability demonstration test [4] to assess whether or not a new acquisition system has met its reliability requirement. An Operating Characteristic (OC) curve [5] is typically used to manage the risks associated with the test, which allows for the consideration of statistical confidence along with the power or probability of a successful test. Lower confidence bounds are also typically used to demonstrate reliability requirements. This makes it necessary to enter the test with a system reliability that is greater than the target reliability requirement in order to have a high probability of successfully passing the demonstration test. Reliability design goals are then higher than the reliability requirements themselves. In many cases these goals are more than double the actual requirements, and the high goals are purely a result of the statistical estimator being employed to assess the reliability. In practical applications these goals may be unrealistic, cost-prohibitive, or even technologically unachievable. The issue is further exacerbated when considering an increased emphasis to place new systems into operational usage faster while under tighter budget constraints.

This paper presents an approach to mitigate the problem of reliability demonstration with fixed configuration testing by allowing for the combination of developmental reliability growth test data with operational reliability test data within a Bayesian probabilistic framework. The benefits of combining data from multiple test events were recognized in two recent reports from the National Academy of Sciences (NAS) [6], [7]. Particular emphasis was placed on the suitability of Bayesian methods for performing the combination, with Appendix B in [7] providing a simple approach for a two failure mode system. The NAS report in [6] discusses reliability growth modeling along with data combination, but the two subjects are kept separate. An additional method presented in [8] uses generalized linear models for combining reliability data from two different test events.

Previous work involving combining data from reliability growth and demonstration testing includes that of Miller [9] and Crow [10], which rely on the well-known Power-Law Nonhomogeneous Poisson Process to model the reliability growth portion of the data. They present methods for combining the growth portion of testing with a fixed configuration demonstration test, allowing for a deterministic degradation in the reliability between the test events. Each of these approaches is limited by the deterministic application of the scale factor to account for the degradation.

The approach presented here follows the same concept, but the Bayesian formulation easily allows for uncertainty to be included on the degradation scale factor. This provides an
additional uncertainty in the results that will more closely match the practical situation, in which limited information on the actual degradation may be available. The model provides a complete inference framework via the posterior distribution which includes both developmental and operational reliability information. The results can also be extended to develop a fully Bayesian reliability growth planning model, which is the subject of a separate paper.

2 Methodology

The methodology considers the combination of developmental and operational test data while accounting for differences in the underlying failure intensity that may exist between the two test events. The approach builds upon the reliability growth model developed in [11], where one or more failure modes may be mitigated through the implementation of a corrective action during developmental testing. The operational test is assumed to be a constant configuration test, a corrective action during developmental testing. The failure modes may be mitigated through the implementation of reliability growth model developed in [11], where one or more failure modes exist in the system. Failure modes generate failures independently. Each occurrence of a failure mode results in a system failure.

4. The failure intensity for a failure mode is constant both before and after a corrective action is implemented.
5. No new failure modes are induced by corrective actions.
6. There are p identical systems being tested.

For mode i with rate λ_i, assume n_{ij} failures are observed in test length T_j with times $(t_{ij,1}, t_{ij,2}, \ldots, t_{ij,n_{ij}})$ for system j. Also assume that corrective actions for the l^{th} failure mode on the j^{th} system occur at time v_{ij} with Fix Effectiveness Factor (FEF) d_l. The likelihood is then

$$\mathcal{L}(t_{ij,1}, \ldots, t_{ij,n_{ij}} | \lambda_i) = (1-d_l)^{\sum_{j=1}^{n_{ij}} n_{ij}} \lambda_i^{\sum_{j=1}^{n_{ij}}} \exp\left(-\lambda_i \sum_{j=1}^{n_{ij}} v_{ij} + (1-d_l) \left(\sum_{j=1}^{n_{ij}} T_j - \sum_{j=1}^{n_{ij}} v_{ij}\right)\right).$$

Note that the likelihood involves a telescoping sum of the individual failure times, and the simplified form reduces to a function of the total number of failures across each of the systems.

For the prior distribution on the failure intensity, it is useful to consider a distribution that will adequately reflect the failure intensity for a given failure mode. The failure intensities for the collection of failure modes found in a complex system are shown to be adequately modeled as a random realization from a Gamma distribution [12]. This form of the prior probability distribution recognizes what is commonly referred to as the “vital few, trivial many” property. This acknowledges that each failure mode provides a different contribution to the overall system failure intensity, with a relatively few number of failure modes being significant enough to be observed in test. We assume the prior distribution to be a Gamma(α, β) parameterized as

$$p(\lambda_i) = \frac{\lambda_i^{\alpha-1} \exp\left(-\frac{\lambda_i}{\beta}\right)}{\Gamma(\alpha) \beta^\alpha}.$$

where $\alpha > 0$ and $\beta > 0$. Standard techniques yield the Gamma posterior distribution for a single failure mode parameterized in (3).

$$p(\lambda_i | n_i) = \frac{\lambda_i^{\sum_{j=1}^{n_{ij}} n_{ij} - 1} \exp\left(-\lambda_i \sum_{j=1}^{n_{ij}} v_{ij} + (1-d_l) \left(\sum_{j=1}^{n_{ij}} T_j - \sum_{j=1}^{n_{ij}} v_{ij}\right)\right)}{\Gamma(\alpha+n_i) \beta^{\alpha+n_i}}.$$

The conditional variable n_i is the vector containing the number of failures from each system for the i^{th} failure mode. Note that if no corrective action is attempted, the d_i are equal to zero, and (3) reduces to the Gamma posterior that is commonly found through conjugate Gamma-Exponential methods. The posterior estimate for the system level failure intensity can be found by summing the individual mode posterior estimates and taking the limit as the number of modes becomes large [11]. The result can be shown to be well approximated by a Gamma distribution. We use the notation λ_{DT} to denote the system level failure intensity from developmental testing and distinguish between later assessments of the desired operational failure intensity, and the conditional variable n refers to the vector containing the number of failures for each of the m observed failure modes. In taking the limit with respect to the number of modes, the mean and variance in (4) and (5) are expressed in terms of the prior system level mean λ_B and the original β parameter from the prior Gamma distribution [11].

$$E[\lambda_{DT} | n] = \sum_{i=1}^{m} \left(\frac{1-d_i}{\beta} \sum_{j=1}^{n_{ij}} n_{ij} \left(\frac{1}{\beta} \sum_{j=1}^{n_{ij}} v_{ij} + (1-d_i) \left(\frac{1}{\beta} \sum_{j=1}^{n_{ij}} T_j - \frac{1}{\beta} \sum_{j=1}^{n_{ij}} v_{ij}\right)\right)\right) + \frac{\lambda_B}{1 + \beta \sum_{j=1}^{n_{ij}} T_j}.$$

$$\text{Var}[\lambda_{DT} | n] = \sum_{i=1}^{m} \left(\frac{1-d_i}{\beta} \sum_{j=1}^{n_{ij}} n_{ij} \left(\frac{1}{\beta} \sum_{j=1}^{n_{ij}} v_{ij} + (1-d_i) \left(\frac{1}{\beta} \sum_{j=1}^{n_{ij}} T_j - \frac{1}{\beta} \sum_{j=1}^{n_{ij}} v_{ij}\right)\right)\right) + \frac{\lambda_B}{1 + \beta \sum_{j=1}^{n_{ij}} T_j}.$$

This results in

$$\lambda_{DT} \sim \text{Gamma}[\alpha_B, \beta],$$

where α_B and β are the prior parameters.
where the Gamma parameters can be found using the Method of Moments in (7) and (8).

\[
\begin{align*}
\tilde{\alpha} &= \frac{E[\lambda_{DT} | n]}{\text{Var}[\lambda_{DT} | n]} \quad (7) \\
\tilde{\beta} &= \frac{\text{Var}[\lambda_{DT} | n]}{E[\lambda_{DT} | n]} \quad (8)
\end{align*}
\]

Note that both the prior and posterior distributions on the system level failure intensity in DT are Gamma, which is a conjugate relationship. This allows for ease in modeling multiple DT phases within the framework already established. Updating in this manner assumes consistency between successive test phases, and model goodness of fit procedures described in [11] should be employed to ensure that the results are reasonable. Equations for Empirical Bayes estimation of the parameters in (4) and (5) are also provided in [11].

2.2 Assessing Reliability in Operational Testing

For assessing the reliability from an OT, the Gamma posterior distribution from Section 2.1 can be used to develop the appropriate prior distribution. The conjugate relationship of the Gamma-Exponential can easily be leveraged in this context, but the degradation in the system reliability must also be considered. This degradation is traditionally considered in terms of a decrease in the system Mean Time between Failure (MTBF). Assuming a 100% degradation in the MTBF (or a corresponding increase in system failure intensity) leads to the relationship between the developmental and operational failure intensities shown in (9)-(11), where the DT and OT subscripts denote the corresponding MTBF and failure intensity values.

\[
MTBF_{OT} = \left(1 - \gamma\right)MTBF_{DT} \quad (9)
\]

\[
\frac{1}{\lambda_{OT}} = \left(1 - \gamma\right)\frac{1}{\lambda_{DT}} \quad (10)
\]

\[
\lambda_{DT} = \left(1 - \gamma\right)\lambda_{OT} \quad (11)
\]

Utilizing the distribution in (6) and properties of the Gamma distribution [13] leads to

\[
\lambda_{OT} | \gamma \sim \text{Gamma}[\tilde{\alpha}, \tilde{\beta} | (1 - \gamma)] \quad (12)
\]

The prior distribution in (12) is conditioned on the \(\gamma \) parameter, so we can also express (12) as

\[
\lambda_{OT} | \gamma \sim \text{Gamma}[\tilde{\alpha}, \tilde{\beta} | (1 - \gamma)] \quad (13)
\]

The expression in (13) is now a reasonable prior distribution for use with the test data from the OT phase. Assume again that there are \(p \) systems under test. Next assume that for a given system \(j \), \(n_{OT,j} \) failures are observed in test length \(T_{OT,j} \) with times \(t_{OT,1,j}, t_{OT,2,j}, \ldots, t_{OT,p,j,n_{OT,j}} \). The likelihood is then given as

\[
L_{OT,j}(t_{OT,1,j}, t_{OT,2,j}, \ldots, t_{OT,p,j,n_{OT,j}} | \lambda_{OT}) = \lambda_{OT}^{n_{OT,j}} \exp\left(-\lambda_{OT} \sum_{j=1}^{p} t_{OT,j}\right) \quad (14)
\]

As before, the notation \(n_{OT} \) is the vector containing the number of OT failures for each system. A simple Gamma-Exponential conjugate relationship would yield the posterior distribution \(p(\lambda_{OT} | n_{OT}, \gamma) \), which is conditional on \(\gamma \). The true value of \(\gamma \) is unknown though, so the desired unconditional posterior is given by

\[
p(\lambda_{OT} | n_{OT}) = \left[\sum_{\gamma} p(\gamma) p(\lambda_{OT} | \gamma) \prod_{j=1}^{p} L_{OT,j}(t_{OT,1,j}, t_{OT,2,j}, \ldots, t_{OT,p,j,n_{OT,j}} | \lambda_{OT}) \right] \quad (15)
\]

where the \(\Lambda \) and \(\Gamma \) in (15) denote the support of the prior distributions on \(\lambda_{OT} \) and \(\gamma \) respectively. The degradation is also treated independently from the value of the failure intensity. Note that the expression in (15) treats the degradation factor as a nuisance parameter by finding the joint posterior distribution and then calculating the resulting marginal distribution of interest.

When developing the prior distribution on the degradation between test phases, detailed information is generally not available. For this reason we demonstrate the use of the Maximum Entropy principle [14] to provide a repeatable approach that allows for consistency in application. We further assume that only average MTBF degradation values are available. The average values can be determined through examination of historical performance on similar systems, or through comparison of the potential failure modes that exist in the system with the DT environment. Maximizing the entropy subject to the assumed mean value of the MTBF degradation and a range of \((0,1)\) results in the prior distribution for \(\gamma \) being a truncated Exponential distribution given by

\[
p(\gamma) = \frac{\mu \exp(-\mu\gamma)}{1 - \exp(-\mu)} \quad (16)
\]

where \(\mu \) is the solution to

\[
\frac{1}{\mu} - \frac{\exp(-\mu)}{1 - \exp(-\mu)} = \varepsilon \quad (17)
\]

for mean degradation value \(\varepsilon \). Examining equation (17) reveals that \(\mu \) will be zero when the mean degradation is equal to 0.5. This presents no real problem in practice though, as the mean value of the degradation is not likely to be known with high precision. Perturbing the mean slightly to 0.49 will allow for a positive solution.

To aid in analytic calculations of (15), we approximate the truncated Exponential distribution in (16) with a Beta distribution. The parameters of the Beta distribution can be found by equating the mean and second moment about the mean of the two distributions, which results in the system of equations given by (18) and (19).

\[
\frac{a}{a + b} = \frac{1 - \exp(-\mu)}{1 - \exp(-\mu)} \quad (18)
\]

\[
\left(\frac{a}{a + b}\right)^{a + 1} + \left(\frac{a + b}{a + b + 1}\right)^{a + b} = \frac{\exp(-\mu) + 2}{\mu} \frac{\exp(-\mu)}{1 - \exp(-\mu)} \quad (19)
\]

For the system failure intensity under squared error loss, the Bayes estimate of the failure intensity is just the mean of the posterior distribution in (15). Utilizing the Beta prior on the degradation, the mean is found to be
The function given in (21) can be evaluated by most standard mathematical software. The ratio of Hypergeometric functions acts as a scale parameter for the usual posterior mean to account for the differences in the two test environments. The posterior variance can be developed similarly as

$$E[\lambda_{OT} \mid n_{OT}] = \frac{\tilde{F}(\tilde{a} + n_{OT} + 1, a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}})}{\tilde{F}(\tilde{a} + a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}})} \cdot F(\tilde{a} + n_{OT}, a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}}) / F(\tilde{a} + a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}})$$

where \(\tilde{F}(a, b, c, z)\) is the integral form of the hypergeometric function given by

$$\tilde{F}(a, b, c, z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} (1-t)^{b-1} (1-zt)^{a} dt.$$

The function given in (21) can be evaluated by most standard mathematical software. The ratio of Hypergeometric functions acts as a scale parameter for the usual posterior mean to account for the differences in the two test environments. The posterior variance can be developed similarly as

$$Var[\lambda_{OT} \mid n_{OT}] = \frac{\tilde{F}(\tilde{a} + n_{OT} + 1, a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}})}{\tilde{F}(\tilde{a} + a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}})} \cdot F(\tilde{a} + n_{OT}, a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}}) / F(\tilde{a} + a + b + \tilde{a}, \frac{1}{\tilde{D}T_{OT}})$$

The connections to the Gamma distribution provide evidence that the overall posterior may be well approximated by a Gamma distribution with moment estimates defined in (7) and (8), substituting the mean and variance from (20) and (22). To confirm this notion, Figure 1 shows a histogram developed using a simple Metropolis Random Walk to generate samples from the posterior in (15) for a system with fifty failure modes. The dashed line is the approximate Gamma developed using (20) and (22), which confirms that the Gamma provides a reasonable description of the posterior distribution.

3 DEMONSTRATION TESTING

As mentioned previously, demonstration test planning with classical OC curve analysis presents a number of issues in practical application. The method involves calculating the consumer and producer risks associated with the planned demonstration test, where demonstration is considered to be successful if the appropriate lower confidence bound on the MTBF is greater than or equal to the required MTBF [5]. The consumer risk, denoted by \(\alpha\), is the risk of accepting that the MTBF of the system meets its requirement when it truly does not. Producer risk is the probability of not accepting that the MTBF of the system meets its requirement when it truly does. It can be found by considering the probability of a successful demonstration test, where a successful test is defined by observing less than or equal to the allowable number of failures. The traditional OC curve approach is conditional on the value of the system failure intensity entering the test, which is not known in practice. This is due to two sources of uncertainty. The first is the system failure intensity value at the end of the DT program, and the second is the amount of degradation that will occur when transitioning from a DT environment to an OT environment.

The model framework outlined in Section 2.2 explicitly addresses the uncertainty present prior to entering the test by considering uncertainty on both the system failure intensity and the associated degradation factor between the prior DT and the operational demonstration test. Figure 2 shows an example of the posterior distribution of the failure intensity relative to the requirement for a consumer risk of 0.20. As shown in the figure, consumer risk of 0.20 corresponds to the posterior probability of the failure intensity being greater than the requirement of 0.20. When considering the consumer risk in this setting, the appropriate upper probability bound from the Gamma posterior distribution defined by (20) and (22) can be used to determine the maximum number of allowable failures for the desired level of consumer risk.

Figure 2- Graphical Representation of Consumer Risk \((\alpha=0.20)\)

For the maximum number of failures allowed for a successful demonstration test, \(n_{max}\), the full unconditional probability of a successful test can also be calculated. The Gamma prior defined in (13) and the Beta prior defined by (18) and (19) account for the uncertainty in the failure intensity and degradation respectively. The resulting probability is given by
The expression in (23) is a straightforward extension of the classical probability of acceptance defined in [5], where the failure intensity and degradation parameters are mixed by their respective uncertainty distributions. This result represents a more complete description of the probability of a successful test and the corresponding producer risk that exists.

When the reliability demonstration event is used to develop reliability design goals, use of the posterior distribution in (20) and (22) along with (23) will result in lower goals for the same consumer and producer risks. These design goals can be thought of as reliability “demonstration margins”, which serve as overall programmatic risk indicators for planned development and testing programs. The use of combined DT and OT data directly reduces the programmatic risks that may exist due to reliability demonstration with OT data alone. Note that the reduced goals are a direct result of the additional information provided by the development reliability growth test data. The reliability growth model in Section 2.1 and [11] provides a substantial amount of information on the failure intensity of the system during developmental testing. This information is still useful even when a conservative approach is used to assign the prior on the degradation factor, which is the case with the Maximum entropy method in Section 2.2.

4 PERFORMANCE COMPARISONS

A simulation was developed to examine the behavior of the proposed model. Performance is examined by comparing the absolute relative error distributions for the proposed method and the classical estimate from multiple replications of simulated tests. The absolute relative error for a single case is defined as

\[
\text{Rel error} = \frac{\hat{\lambda} - \lambda}{\hat{\lambda}},
\]

where \(\lambda \) is the true operational system failure intensity from the simulation, and \(\hat{\lambda} \) is the model estimate resulting from the simulated data. The simulation uses an input parameterization for the Gamma distribution and then generates random failure intensities for the specified number of failure modes. For each realized value of the failure mode DT failure intensity, random failures are then generated for a DT phase of a desired length. Corrective actions are applied according to an arbitrary corrective action strategy, with random FEF values for each mode drawn from a Beta distribution. The failure intensities are then scaled through the application of a degradation factor that is randomly sampled from an additional Beta distribution. This determines the true operational failure intensity, from which random failures are then generated for a second OT of desired length.

The true underlying system level failure intensity (and corresponding MTBF) is then known from the sum of the realized values in the simulation, and there are realized failures from one or more of the test phases that can be used in the model framework to estimate the system level failure intensity. 1000 replications were determined to be sufficient based on convergence of the mean result as a function of the number of replications. Table 1 contains three cases that were examined for comparison purposes. The cases were chosen to cover three possible scenarios with different amounts of testing and reliability.

<table>
<thead>
<tr>
<th>Case</th>
<th>Number of Failure Modes (K)</th>
<th>Initial MTBF</th>
<th>DT Length</th>
<th>OT Length</th>
<th>Mean Degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>100</td>
<td>1000</td>
<td>2000</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>100</td>
<td>2000</td>
<td>500</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 2- Average Relative Error Results

The results in Table 2 indicate that the proposed approach performs as well or better on average than the classical estimator, particularly in those cases where the amount of OT testing is relatively small. Besides the average result, the distribution of the relative error is also of interest. The empirical distribution of the relative error for Case 3 is shown in Figure 3. This demonstrates that the proposed model provides significant performance increases over the entire error distribution.

5 DISCUSSION

It is helpful to consider a few points involving the practical application of the proposed method. To begin, the resulting posterior distribution after operational testing does not explicitly use the amount of developmental testing. It only assumes that the uncertainty on the system failure intensity prior to operational testing can be represented by a Gamma distribution. This increases the flexibility of the approach by allowing for the use of additional relevant reliability information. Data from lower level testing or analysis may potentially be used along with or in place of developmental reliability growth testing to develop the prior Gamma. If
lower level data is used to develop the prior without system level data, it is important that a rigorous examination of the potential failure modes be completed in order to determine a reasonable value for the mean degradation between DT and OT.

For the degradation distribution itself, the use of the Maximum Entropy approach does provide a repeatable framework to allow for consistency when desired. The assessment model is developed using only the Beta approximation for the prior distribution on the degradation though. Other relevant information should also be used whenever possible to develop the Beta prior on the degradation value.

We also point out that the degradation in reliability between the developmental and operational tests is applied through a scaling of the system level failure intensity. While the assumption is a basic approach, it provides the necessary flexibility for the degradation to occur in many possible ways. For instance, the developmental testing may not have the opportunity to fully exercise certain components of the system, leading to an increase in the failure intensity for a subset of the failure modes during OT. It is also possible that the DT may fully exercise all aspects of the system, but in a more benign manner than the operational environment. The same degradation may then be realized through a smaller individual increase across a larger number of failure modes.

REFERENCES

BIOGRAPHIES

Martin Wayne
Director, AMSAA RDAM-LR
392 Hopkins Road
Aberdeen Proving Ground, MD, 21005, USA
e-mail: amsaa.reltools@us.army.mil

Martin Wayne leads the Center for Reliability Growth within the Army Materiel Systems Analysis Activity. He is currently a PhD candidate at University of Maryland, College Park.

Mohammad Modarres
University of Maryland, Center for Risk and Reliability
Department of Mechanical Engineering
College Park, MD 20742, USA
e-mail: modarres@umd.edu

Mohammad Modarres is the Minta Martin Professor of Engineering and director of the Reliability Engineering Program at the University of Maryland, College Park.