An 8-Element 2–16 GHz Phased Array Receiver with Reconfigurable Number of Beams in SiGe BiCMOS

Mustafa Sayginer and Gabriel M. Rebeiz
University of California, San Diego, La Jolla, CA, 92093, USA.

Abstract — This paper presents an 8-element 2–16 GHz phased array receiver chip in SiGe BiCMOS with reconfigurable number of beams. An 8-input single-output, or a 4-input dual-output, or a 2-input 4-output beams can be synthesized in this chip. Additionally, two digital beamforming channels can also be used in this chip. The measured 2-input 4-output beam mode results in a gain of 10-11.5 dB at 2-16 GHz with excellent gain flatness. The measured noise figure and input referred P_{1dB} is 11.5-12 dB and $-15±1$ dBm respectively, at 2-14 GHz. The wideband channel has a 5+3 bit phase shifter control and a 3-bit VGA ensuring a 5-bit phase response with 8 dB gain control over the entire band. The chip consumes 265 mW/channel from a 2.5 V supply.

Index Terms — Multiple-beam, phased array, phase shifter, SiGe BiCMOS.

I. INTRODUCTION

SiGe and CMOS technology which is now extensively employed for RF and digital beamforming phased-array systems results in a high level of integration between the analog RF and digital control functions (SPI), allows the integration of a large number of channels (4-16 channels) on the same chip, and in some cases, results in 2-4 simultaneous beams synthesized on-chip using RF combining techniques [1-5]. These chips are individually designed and fabricated for every specific frequency and number of beams, which results in a relatively limited number of chips for a particular application. Since the NRE (non-recurrent engineering) design and mask cost of these chips is very high, this results in a relatively high cost per chip and therefore, still limits the use of SiGe for a variety of low-cost systems.

A high-volume demand for a single-chip design can only exist when the SiGe or CMOS design satisfies multiple application needs in the same chip, such as 2-16 GHz operation (so that the chip can be used at different frequencies with nearly equal performance), capabilities of forming single or multiple beams (1, 2 or 4 simultaneous beams), capability of having a digital beamforming circuitry for sub-array beamforming, and reasonable noise and linearity performance.

This paper presents a 2-16 GHz SiGe BiCMOS 8-element phased array receiver with reconfigurable number of beams, and with digital beamforming capabilities (Fig. 1). The proposed architecture is capable of operation at any frequency and bandwidth between 2 GHz and 16 GHz with good linearity (input P_{1dB}=14 to -16 dBm) and noise figure (NF = 11.5-12 dB). Note that an external LNA is employed and this will determine the total system NF. The chip can be configured for 1, 2, or 4 simultaneous beams, and with added digital-beamforming (DBF) and IF down-conversion capabilities. The multiple-beam configurations can be switched electronically within the same chip and all the receiver parameters can be set using a standard serial peripheral interface (SPI).

Fig. 1. The 8-element phased array core-chip with a reconfigurable number of output beams.
The reconfigurable chip contains 8-phased-array channels with a wideband input switching network and a reconfigurable output combining network. These input and output networks allow the chip to be configured for 4 different applications: 1) 8-antenna inputs with a single-beam output beamformer; 2) 4-antenna inputs with 2-simultaneous beamforming outputs; 3) 2-antenna inputs with 4-simultaneous beamforming outputs (example shown in Fig. 2). Additionally, the beamforming outputs can be mixed to an IF frequency before exiting the chip. Also, 4) additional mixers are placed on-chip so as to reconfigure the chip as a 2-antenna input digital beamforming receiver.

II. TWO-INPUT FOUR-BEAM OUTPUT CONFIGURATION

For this paper and due to the limited available space, we will present results on the 2-antenna input/4-beam output mode (Fig. 2), but all the other modes have similar response since they use the same core-channels. In this design, the signals are differential throughout the chip except at the RF input/output ports which are single-ended (SE). The conversion between the input SE ports and the differential circuitry is done using wideband active baluns (input) and Diff-to-SE converters (output). The input/output 2-16 GHz switches are designed to be either all passive using the 0.18μm CMOS technology available in this process, or using active cascode-based stages.

The 2-16 GHz channels consist of vector-modulator phase shifters (PS) based on a wideband quadrature all-pass filter network [1], and followed by a variable gain amplifier (VGA). Fig. 3 and 4 present the relevant circuits for the input active switch and vector modulator, respectively.

The channel outputs are then fed to an active 4-pole/4-throw switch to select the number of channels which are fed to the beamformer as shown in Fig. 1 and 2.

The left and right channels are first added together in a wideband active cascode summer, and these outputs pass by a switch network so as to be either added again for form 1 or 2 simultaneous beams, or routed to the output ports as 4 simultaneous beams (see Fig. 2). Note that the final summers in the 1 or 2 beam configuration are based on passive networks to maintain high linearity and avoid any power saturation in the output summer.
Fig. 5. 8-element phased array chip with reconfigurable number of beams (5 mm x 2.5 mm)

III. MEASUREMENTS

The chip was fabricated using the Jazz H4 SiGe BiCMOS process with 6-layer metal stack-up. The entire chip consumes 850 mA from a 2.5 V supply for all-modes, and the effective single channel power consumption is 265 mW. The chip size is 5x2.5 mm2 (Fig. 5). The measured gain and input/output return losses (RL) are presented in Fig. 6. For the 2-antenna/4-beam configuration, the gain is defined as the measured S_{21} between the output port and a single input port, with the other port left open.

The measured gain for the 2-in 4-out mode is ~10-11.5 dB at 2-16 GHz with excellent gain flatness (presented for the 0° phase setting). The chip results in a wideband input and output impedance match as shown in Fig. 6. The normalized channel phase responses are shown in Fig. 7 and no phase crossings are observed at 2-16 GHz for a 5-bit setting (an 8-bit control is also possible). The measured RMS gain and phase error (not shown) are < 0.4 dB and < 6° at 2-16 GHz, with a range of 3-4° at 6-12 GHz, ensuring a 5-bit phase response over the entire band (and a 6-bit response at 6-12 GHz). A 3-bit VGA with 8 dB linear-in-dB control with DAC circuitry is also present on each channel, and the results are not included for brevity. The chip noise figure and input referred $P_{1\text{dB}}$ ($IP_{1\text{dB}}$) are also measured over frequency (Fig. 8), and the NF is 11.5-12 dB at 2-14 GHz. The $IP_{1\text{dB}}$ is ~ -15±1 dBm and also shows a flat response. The NF and $IP_{1\text{dB}}$ values agree well with simulations to within ±1 dB. Note that other core-chip configurations result in similar gain, input and output match, NF and $P_{1\text{dB}}$ values since this is mostly limited by the input switching network and the output active combiners.

IV. CONCLUSION

This paper presented a wideband 2–16 GHz Phased Array Receiver chip with reconfigurable beam outputs. The chip performance is demonstrated over 2-in 4-out configuration to show its unique capabilities over a wide range of frequencies. Application areas are phased-array systems requiring a variety of beams, and using the same core-chip for reduced cost and system flexibility.

REFERENCES

