Digital Image Synthesizers:

Are Enemy Sensors Really Seeing What’s There?

P.E. Pace, D.J. Fouts & D.P. Zulaica

USN Postgraduate School

ABSTRACT

For a successful enemy maneuver, their most important action is the ability to identify, locate, and track their correct target. High-resolution imaging sensors such as the inverse synthetic aperture radar perform this action in the most effective way and are especially useful against low radar cross-section targets. Once the correct target is acquired and identified, the decision to engage is made and the weapons are selected. Counter-targeting is the attempt to prevent (or degrade) the engage-and-launch-weapons decision by the enemy. This paper describes an all-digital image synthesizer technique capable of generating realistic false-target images for counter-targeting using modern digital radio frequency memory technology. Use in counter-lock-on for coherent seekers in the terminal mode are also discussed. Examples of the output false target image capability are presented.

ENEMY PRECISION ENGAGEMENT

Force movement, maneuver, and sustainment over long distances are the characteristics of a successful enemy organization. This success comes in part from the use of precision engagement against US and coalition operational targets to attempt a decisive effect for their terror campaigns and major operations. Precision engagement for the enemy involves targeting and then allocating the selected targets to the most appropriate hard-kill weapon systems. The time from location and identification of a target to weapon arrival is also important for success. That is, the speed at which the enemy can deliver the weapon to the correct target has great significance [1]. The precision engagement process is summarized in Figure 1. The process begins with locating, acquiring, and identifying the target using a high-resolution imaging sensor such as inverse synthetic aperture radar (ISAR). The ISAR provides the target’s range, bearing, and positional data with high resolution images for display and recording.

For example, the Russian Sea Dragon maritime patrol radar employs an ISAR 2-D imaging mode to detect and classify surface and surfaced submarine targets within 150 km. Depending on the ISAR target identification, the decision to engage the target and launch the weapon is made and only the ability to quickly confuse this targeting process can prevent the weapon from being launched.

Actions taken to confuse or deceive the terror’s pre-launch weapons designation and targeting efforts are known as counter-targeting techniques. The use of noise jamming must be done continuously interfering with normal radar and communication operations. Few key targets are stationary and deception is a major part of counter-targeting. Counter-targeting actions include the use of low radar cross-section materials, stealth, and deception devices in order to disrupt the weapons targeting prior to valid lock-on, thus preventing the enemy from obtaining an accurate fire control solution. Unfortunately, these actions are largely ineffective against wideband imaging sensors such as the ISAR, especially when trying to hide large, high-value targets.

The terminal homing modes of future threat missiles are also expected to use wideband imaging seekers. The use of an ISAR seeker in the terminal phase of a missile attack allows decoy rejection and good aimpoint accuracy, resulting in a greater probability of kill. Actions to deceive or degrade missile acquisition and homing modes are known as counter-lock-on and counter-terminal techniques, respectively. Currently, counter-lock-on actions consist of electronic attack (jamming), distraction chaff, and seduction chaff, as well as decoy repeaters. However, these actions are not always practical against high-resolution imaging seekers.

IMAGING SENSOR TECHNOLOGY

ISAR is similar to spotlight synthetic aperture radar (SSAR) [2]. Instead of blip type recognition of a signal reflecting off of a target, ISAR and SSAR collect and process many signals to form a range, cross-range image of the target. They both use a
pulse compression waveform to achieve a high-range resolution. They differ however, in the way the cross-range resolution is obtained. For the SSAR the movement of the sensor is used to create a “synthetic” antenna aperture between the sensor and the target as shown in Figure 2A. The circular (focused) SSAR motion through the angle Ψ provides the Doppler frequency shift between the various parts of the target and the sensor in order to obtain the cross-range samples. The ISAR movement is shown in Figure 2B. Here the target motion (e.g., ship rocking on the sea) provides the Doppler frequency shift between the various parts of the target and the sensor unit. The ISAR is a useful sensor for maritime precision engagement since sensor platform movement about the target is not required.

An example of an ISAR range, cross-range image of a ship is shown in Figure 3 [3]. Figure 3A shows the photo of the U.S.S. Crockett. The ISAR image of the U.S.S. Crockett is shown in Figure 3B. These types of images can be used for classification and engage decisions. Note the two masts and the superstructure details are clearly evident in the ISAR image.

COUNTERING THE IMAGING SENSOR

The need for coherent counter ing of ISAR imaging sensors remains a high priority for many electronic warfare systems. Methods of generating realistic false targets to counter wideband-imaging radars have historically used acoustic charge transport (ACT) analog tapped delay lines or fiber optic tapped delay lines. ACT devices however, are no longer commercially available and have a limited bandwidth, making them impractical against wideband imaging radars. Optical devices are bulky and costly to manufacture, especially for the long delay line lengths representative of large target delays. Furthermore, neither of these technologies can be rapidly reprogrammed to synthesize realistic (moving) false target images.

Advances in integrated circuit fabrication technology such as sub-micron complementary metal-oxide-semiconductor (CMOS) and Bipolar CMOS (BiCMOS) for Application Specific Integrated Circuits (ASICs) have greatly enhanced available speeds and gate densities in modern digital circuits. Speeds exceeding 1 GHz and densities reaching 25 million usable gates are currently available. These capabilities, along with reduced production costs, suggest that a programmable imaging architecture for generating realistic false target signatures can be realized using custom digital ASICs integrated with modern Digital RF Memory (DRFM) technology.

Recently, an all-digital image synthesizer capable of generating multiple false-target images has been developed. The false targets are generated from a series of intercepted ISAR chirp pulses to provide a novel counter-targeting and counter-lock-on capability. The digital image synthesizer can also be deployed for Suppression of Enemy Air Defense and any operation that encounters interrogating ISAR imaging sensors. The device can be deployed on aircraft, ships, unmanned air or surface vehicles to provide a superior imaging decoy and deception capability.

A block diagram of the false-target image synthesizer and decoy system is shown in Figure 4. The intercepted chirp pulses are first down-converted in the receiver, sampled by an analog-to-digital converter (ADC) and stored in bulk memory.
The samples of each intercepted pulse are processed by the programmable target imaging ASIC to create the false targets using a series of complex range bin modulators. The digital output of the ASIC is converted to an analog signal using a digital-to-analog-converter (DAC) and up-converted to the carrier frequency for retransmission to the ISAR. As the ISAR processes the returned pulses, a high-resolution image of the false target is created.

The position of the false target in range can be controlled by delaying in time, the read-out samples going to the image synthesizer. The image synthesizer performs the complex modulations to synthesize the temporal lengthening and amplitude modulation due to the many recessed and reflective surfaces of the desired false target and also generates a realistic Doppler profile for each surface. The ASIC contains a parallel array of identical digital modulators with one modulator for each false target range bin. That is, each modulator synthesizes the part of the overall image that is within the false-target range bin associated with that modulator. The target extent, amplitude, and target motion are controlled by the gain and phase increment coefficients applied to the ASIC.

To build a database of realistic false-target image coefficients, the Fast-Radar Target Signature (RTS) model within the CRUISE_Missiles engagement simulation at the Naval Research Laboratory is used. For example, the coefficients for an aircraft carrier false target within a sea multipath environment can be derived. The Fast-RTS model is rigorously derived from the RTS model, which is a first principles physics-based radar cross-section prediction code, and is the Naval Sea Systems Command (NAVSEA) standard.
for ship RF signature prediction. The resolution and RF frequency used to generate the coefficients are those of the threat ISAR. Note that this decoy capability however, is not limited to sea surface targets. The coefficients to generate images of aircraft and building structures can easily be derived.

As an example, Figure 5A shows a range-Doppler matrix that can be used to create a false-target and shows the individual scatters and their corresponding Doppler frequency. Note the similarity to the ISAR image in Figure 3B. The coefficients necessary to drive the complex modulators in the ASIC can be derived for each range bin. Figure 5B shows a MATLAB simulation of the image formed in the ISAR sensor after processing the image synthesizer output pulses. The range-Doppler description of the false-target ship with thirty-two range bins has a configuration that closely matches the ISAR image of the U.S.S. Crockett and demonstrates the feasibility of the architecture to generate false target images. Note that the false target images are only generated when a threat sensor is detected and is a key advantage to the approach.

CONCLUDING REMARKS

The digital image synthesizer chip was developed by a student/faculty team in the Naval Postgraduate School’s Center for Joint Services Electronic Warfare [5 – 15]. The 5.5 million-transistor chip has been fabricated to ensure operation at 700 MHz and includes 512 fully programmable range bin processors. The chip fabrication parameters include:

- 0.18 μm CMOS 6 metal process (TSMC),
- 11.5 x 11.5 mm die size,
- 5.5 million CMOS transistors, and
- 257-pin Pin Grid Array package.

This new device will be capable of synthesizing multiple false target images against coherent emitters that perform range-Doppler processing. After testing and integration with
the digital RF memory, the device will be available for theater operations.

ACKNOWLEDGEMENTS

This work was supported in part by the Office of Naval Research (ONR) Code 313 and the Naval Research Laboratory (NRL) Code 5700.

REFERENCES

[1] Rear Admiral James Stavridis and Captain Frank Pandolfe,
From Sword to Shield: Naval Forces in the War on Terror,

[2] B. Berizzi,
ISAR imaging of targets at low elevation angles,
IEEE Transactions on Aerospace and Electronic Systems,

[3] Naval Research Laboratory,
http://radar-www.nrl.navy.nriUAreas/lSAR.

[4] P.E. Pace, D.J. Fouts, S. Ekeston and C. Karow,
Digital false-target image synthesizer for countering ISAR,
IEEE Proceedings – Radar, Sonar, Navigation,

[5] K. Macklin,
Benchmarking and Analysis of the SRC-6E Reconfigurable Computing System,

[6] C. Adams,
Three dimensional image synthesis: theory and application,

[7] K. Ozkan,
VHDL Modeling and Simulation of a Digital Image Synthesizer for Countering ISAR,

[8] D. Mattoo,
Circuit Design, Mask Layout and Verification for a 512 Processor ASIC for Generating False Target Radar Images,

[9] C. Altmeyer,
Design, implementation, and testing of a VLSI high performance ASIC for extracting the phase of a complex signal,

[10] F. Le Dantec,
Performance analysis of a digital image synthesizer as a counter-measure against inverse synthetic aperture radar,

[11] H. Bergon,
VHDL modeling and simulation for a digital target imaging architecture for multiple targets generation,

[12] B. Ozguvenec,
Mask Layout of an ASIC for Generating False Target Radar Images,

[13] C. Guillaume,
Circuit Design and Simulation for a Digital Image Synthesizer Range Bin Modulator,

[14] C. Amundson,
Design, Implementation, and Testing of a High Performance Summation Adder For Radar Image Synthesis,

[15] K. Kirin,
VLSI Design of a Sino/Cosine Lookup Table For Use With A Digital Image Synthesizer ASIC,

[16] S.R.T. Ekestrom, and C. Karow,
An all-digital image synthesizer for countering high-resolution imaging radars,