Progress on MBE Grown Type-II Superlattice Photodiodes

C. J. Hill*, J.V. Li, J.M. Mumolo and S.G. Gunapala

Jet Propulsion laboratory, California Institute of Technology, Pasadena, CA 91109 USA

Abstract

The closely lattice-matched material system of InAs, GaSb, and AlSb, commonly referred to as the 6.1Å material system, has emerged as a fertile ground for the development of new solid-state devices. The flexibility of the system in simultaneously permitting type-I, type-II staggered, and type-II broken-gap band alignments has been the basis for many novel, high-performance heterostructure devices in recent years, including the GaInSb/InAs type-II strained layer superlattice infrared detectors proposed by Smith and Mailhiot [1] in 1987. The type-II superlattice design promises optical properties comparable to HgCdTe, better uniformity, reduced tunneling currents, suppressed Auger recombination, and normal incidence operation [2,3]. In 1990, Chow and co-workers first reported Ga_{1-x}In_{x}Sb/InAs superlattice materials with high structural quality, LWIR photosresponse, and LWIR photoluminescence [4]. Later, researchers demonstrated excellent detectivity (approaching HgCdTe, 8-µm cutoff, 77K) on individual superlattice devices [5]. Currently, superlattice detector technology is undergoing the transition from single element detectors into high-performance focal plane imaging arrays[6].

Here we report on the status of superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption in the mid (2-5µm) and long wavelength (8-12 µm) infrared ranges. Our mid-wavelength infrared devices display a zero bias differential resistance-area product as high as 1e6 Ohmcm² at 80K with a 5µm cutoff, with a corresponding detectivity of nearly 1e13 Jones. These detectors continue to function at room temperature with a detectivity of nearly 1e9 Jones. In the long wavelength region, we have produced devices with detectivities as high as 8x10¹⁰ Jones with a differential resistance-area product greater than 6 Ohmcm² at 80K with a long wavelength cutoff of approximately 12µm. A typical IV curve a 12µm cutoff device is shown in Figure 1. Responsivity, detectivity and quantum efficiency for a typical 12µm cutoff device is shown in Figure 2. In addition to detector performance results, recent progress in epitaxial regrowth as a passivation method and progress on long-wavelength imaging array fabrication will be presented.

* Corresponding author: cory.j.hill@jpl.nasa.gov, tel 818-393-7121 fax 818-393-4540
Figure 1. Dark current vs. applied bias for a typical 250x250 µm test device at 80K (12µm cutoff devices).

Figure 2. D*, responsivity, and QE (dotted, right axis) for the 12µm cutoff, large-area superlattice photodiodes.

3 R. H. Miles and D. H. Chow, in “*Long Wavelength Infrared Detectors*”, edited by M. Razeghi, Chapter 7 (Gordon and Breach, Singapore, 1996); and references therein.