Fault Localization and Failure Modes in Microsystems-Enabled Photovoltaic Devices

Sandia National Laboratories
Albuquerque, NM
bbyang@sandia.gov

Abstract — Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in corrective actions and improve existing MEPV fabrication techniques.

Keywords — Microsystems-enabled photovoltaics; reliability; failure analysis

I. INTRODUCTION

Current photovoltaic (PV) technologies, namely wafer-silicon-based PV, thin film PV, and concentrated photovoltaics (CPV), are not yet cost competitive with traditional power sources due to various technological challenges. CPV has the highest efficiency and the highest cost. It requires accurate tracking mounts that significantly add to overall system costs. Thin-film PV is the least expensive technology, but suffers from low efficiency due to low carrier lifetimes. Wafer-silicon-based PV is the most popular PV technology due to its relatively high efficiency and reasonable cost. The manufacturing expense involved in wafer-based silicon, however, is dominated by material costs.

The Microsystems-Enabled Photovoltaic (MEPV) approach utilizes microfabrication techniques to produce small and thin hexagonal silicon solar cells that are 250 μm to 2 mm in diameter and 14 μm to 20 μm in thickness. The fabricated units are released from the wafer and reassembled on a new substrate. This process allows the repurposing of silicon wafer material to manufacture additional cells, thus reducing the material costs that hinder wafer-silicon-based PV [1]. The reduced dimensions and fabrication approach also lead to higher energy densities—current efficiencies are up to 14.9% [2]. These efficiencies are the beneficiaries of scaling effects such as improved carrier collection and a decreased number of defects. The small size allows a wider range of applications such as implementation on flexible substrates [3]. Overall, the MEPV approach allows silicon-wafer-based PV to enjoy lower material costs and broader applications but without the penalty of thin-film PV’s decreased efficiency or CPV’s need for high-accuracy tracking mounts.

The development of FA techniques to improve the performance and reliability of MEPVs will further accelerate the advancement of this technology and improve the cost-competitiveness of solar energy. This paper describes current efforts to establish a failure analysis (FA) and reliability framework to complement existing work in the area. We explore failure modes affecting device yield through the use of light emission microscopy (LEM), light-induced voltage alteration (LIVA), and thermally-induced voltage alteration (TIVA).

II. MEPV TECHNOLOGY OVERVIEW

Each MEPV unit consists of p-doped and n-doped areas on crystalline silicon followed by deposition of insulating nitride layers and two metal 1 regions. One metal 1 region is connected to numerous circular-shaped p-doped areas through contacts that go through the nitride. Similar contacts connect the other metal 1 region to n-doped areas. Before the metallization, the MEPV is released through an HF etching step. The cells are then attached onto the final substrate silicon-side-up (metal-side-down).

Figure 1 shows the back side (metal-side-up, silicon-side-down) of an MEPV unit. The metalized portion of the left half of the MEPV, labeled with the letter “P”, is connected to the p-doped regions of silicon. The right half, labeled with the letter “N”, is connected to the n-doped regions. Both metal 1 pieces have fingers that are interlaced along the centerline of the MEPV. The four pillars in the figure are later connected to the final substrate with solder. The larger array of dots that are visible throughout the MEPV are the etch release holes. The smaller dots are the location of the contacts that connect the doped regions of the silicon to the metal 1 layer.

A cross section sketch of a p-doped region is shown in Figure 2. The n-doped region has a similar geometry. The various layers and geometries are not drawn to scale for the sake of clarity. Note that all metal layers lie beneath the silicon and doped regions. The thinness of the silicon substrate allows effective harvesting of the generated carriers with the metal 1 residing on the back side. Having all metal layers beneath the silicon eliminates shadowing and exposes the entire MEPV to the light source.
Figure 1: This metal-side-up, silicon-side-down picture of an MEPV unit shows the two pieces of metal 1 that are connected to either the p-doped (left half) and n-doped (right half) regions. The two metal 1 pieces have interlacing fingers that run along the center of the MEPV. The silicon beneath the metal 1 is visible between the fingers. The four pillars provide electrical connection to the substrate through a solder connection in a subsequent packaging step. Etch release holes, and the locations of contacts connecting the doped areas to the metal 1 layer are also visible.

Figure 2: Cross section sketch of the p-type section of an MEPV unit. Critical connections include the contacts that connect the implantation regions to the metal 1 and the solder that connects the MEPV to the final substrate. Since the p- and n-regions are isolated from the metal 1 through a nitride layer, reliable fabrication of the contacts that link them directly relate to performance. In addition, the solder that connects the metal to the final substrate is also a potential point of failure. The unique geometry of the MEPV also necessitates a new evaluation of the degradation mechanisms that may limit long-term performance.

III. FAILURE ANALYSIS TECHNIQUES OVERVIEW

The project described in this paper aims to identify and characterize primary failure modes in MEPV devices and detect units prone to early failure. A variety of FA techniques are applied to cells that are nonfunctioning after fabrication. An initial emphasis is placed on atypically low-yielding arrays in order to study as many failure modes as possible.

The MEPV array is first characterized through measurement of its dark current-versus-voltage (I-V) curves and optical inspection. The functionality of each individual element is then evaluated through light emission microscopy (LEM). In LEM measurements, an MEPV is forward biased and the resulting light emission from the device is captured with a low-noise, cryogenically cooled camera. LEM not only separates functioning cells from nonfunctioning ones, but also allows qualitative evaluation of their relative performance. The intensity of light emitted by the device is directly proportional to the performance of the devices. Nonfunctioning devices will not emit light while functioning ones will have a strong emission.

We also explore the electrical response of a MEPV to lasers with wavelengths above and below the silicon band gap under various biasing conditions. In the case of the light-induced voltage alteration (LIVA) technique, the device is placed in either a forward or reverse biased configuration with a constant-current power supply. While biased, the device is locally illuminated with a raster-scanning laser beam that has a wavelength above the silicon band gap [4]. As the laser beam is scanned across the device, it interacts with the sample by creating electron-hole pairs and generating photo-current near electrical junctions. The induced voltage changes in the power supply in response to the photo-current production are recorded as a function of the scanning laser position to form an “induced voltage” or LIVA image.

Thermally-induced voltage alteration (TIVA) is similar to LIVA, except that the wavelength of the laser is below the band gap. As such, the laser no longer generates electron-hole pairs but will instead locally heat the laser-illuminated areas [4]. The resulting “induced voltage” or TIVA images can nondestructively identify low-resistance current leakage paths or areas of thermocouple-like activity in the device.

Following defect localization, subsequent destructive sample preparation techniques, such as focused ion beam (FIB) cross sectioning and mechanical polishing, coupled with scanning electron microscopy (SEM) imaging are used to determine the root cause of nonfunctioning or poorly-performing devices.

The reliability and FA efforts in this paper focus on identifying failure mechanisms and yield detractors in the fabrication and packaging process as well as exploring the use of techniques such as LEM, LIVA and TIVA to nondestructively identify them. These techniques can then be used as additional tools to monitor degradation as part of an ongoing study into the predicted reliability of MEPV technology.

IV. RESULTS

The following subsections highlight the application of the LEM, LIVA and TIVA techniques for root cause analysis of yield detractors and evaluation of MEPV cell performance. Section IV.1 establishes the use of TIVA for localizing faulty connections between the silicon and metal 1. In Section IV.2, the application of LIVA and TIVA under different biasing conditions provides insight into the number of different failure modes that cannot otherwise be differentiated. LIVA was also used to suggest a correlation between uniformity of performance with overall module efficiency.
As described in Figure 2, a high success rate in the fabrication of contacts connecting the metal 1 to the silicon implantation region is directly related to the performance of the MEPV. During earlier development of the MEPV, TIVA was successfully established as a technique to determine the connectivity of each individual contact.

Figure 3 illustrates the application of TIVA to evaluate contacts using a laser with a wavelength of 1340 nm. The left image in Figure 3 is a reflected bright field image of the region of interest. The metal 1 line in the center of the image is connected to n-doped regions of silicon in a radial design pattern. In the TIVA data of Figure 3, only the normal non-defective contacts are visible, enabling rapid evaluation and localization of defects. The TIVA signals in the non-defective contacts are the result of a thermocouple effect. This effect produces an electromotive force (EMF) and voltage change through an intact current path. Since defective contacts do not carry current, no TIVA signals are observed.

Subsequent cross section at the failure sites identified that the root cause was over-etching during the release process that electrically isolated the contact from the implantation region. Figure 4 shows a SEM image of a FIB cross section that illustrates this failure mechanism. The etch-release process has since been optimized and is no longer a significant yield detractor.

Both LEM and forward-biased LIVA have been used to identify nonfunctioning cells in MEPV arrays. Figure 5 shows an example of both functioning (cell A) and nonfunctioning cells (cell B and C) that were identified with LEM. LEM can be used not only to find nonfunctioning cells but also to identify those with diminished performance, which show up as darker regions on the cell.

Forward-biased LIVA provides similar information, as shown in Figure 6. For comparison purposes, the figure encompasses a similar area as Figure 5. We use near-band-gap (1064 nm) and above-band-gap (543 nm) wavelengths to perform LIVA. In reverse-biased LIVA, certain nonfunctioning cells appear in the image while others do not. This suggests different failing modes that can be categorized using the LIVA technique. In Figure 6, no LIVA signals were observed for cell C for both forward biased and reverse biased conditions. LIVA signals in cell B, however, appear in the reverse-biased LIVA image but not in the forward-biased image. This result also implies that cell B either has a weak photovoltaic response, or has a poor electrical connection to the substrate.
Using a wavelength of 1340 nm, which has energy below the band-gap of the device, we find that the TIVA technique also has a different response in forward and reverse bias. Under forward bias, only functional cells appeared in the TIVA image. Similar to LIVA, we find that a subset of nonfunctioning cells appear in the TIVA image when under reverse bias. An example is cell B in Figure 7, which appears in the reverse-biased TIVA image, but not the forward-biased one. Unlike LIVA however, the TIVA image does not detect diffusion regions, but instead identifies resistive current paths that are sensitive to localized heating. The identical LIVA and TIVA response when under forward and reverse bias suggests that cell B may or may not have full photovoltaic functionality but indicates that it is hindered by a weak electrical connection to the substrate.

LIVA has also been established to identify failure mechanisms in the electrical configuration of the MEPV. Figure 8 shows an example of an MEPV cell that is incorrectly connected. The 543 nm laser used to generate this figure scans from the right to the left. If the MEPV is connected incorrectly, the electrical response, and image contrast changes non-uniformly. In the Figure 8, the dark and bright edges of the incorrectly-connected MEPV cell on the lower-right mirror that of the functioning MEPV on the upper-left. This result suggests that the cell in question is biased differently than the rest of the array.

LIVA was also used to establish a correlation between the uniformity in performance of MEPV cells fabricated from the same wafer and its overall efficiency. Figure 9 shows the LIVA response of an MEPV array under reverse bias. All cells in the array are fabricated from the same wafer. In this figure, the laser scans vertically from bottom to top. The MEPV cells in each horizontal row are connected in parallel and each of these rows are connected in series. The relative brightness of each row corresponds to the aggregate efficiency of each row relative to its neighbors, where brighter is indicative of increased performance. The LIVA image in Figure 9 shows that a majority of the performance takes place in the third, fourth, and eighth rows from the top.

A module with higher efficiency has a more uniform response across each of the rows. An example is the module shown in Figure 10, which is 1.86 times more efficient than the Figure 9 module. Therefore, the LIVA study suggests a correlation between cell-to-cell performance consistency in a wafer and the subsequent overall module efficiency.
In this paper, we describe the capabilities of LEM, LIVA and TIVA under different biasing conditions to evaluate MEPV devices. TIVA was used to identify and help solve connectivity issues between the doped regions and metal contacts. LEM, LIVA and TIVA under different biasing conditions can locally evaluate the electrical and photovoltaic performance of an array of MEPVs. LIVA has also been shown to nondestructively identify MEPVs that were incorrectly connected. Subsequent study to correlate LIVA and TIVA response with failure mechanisms is ongoing. The findings will establish a system where LIVA and TIVA are used as a preliminary, nondestructive technique to identify potential failure mechanisms behind nonfunctioning or underperforming MEPV cells. This resulting collection of nondestructive techniques will be instrumental in reliability studies by serving as additional methods to monitor degradation.

The MEPV approach has been demonstrated to produce high-efficiency devices that have the potential to significantly enhance the cost competitiveness of solar energy. The findings and techniques in this paper form the foundation to a reliability program that functions in parallel with existing efforts to accelerate the progress of MEPV technology into a high-reliability, high-yielding product.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

REFERENCES