Processors, Pipelines, and Protocols for Advanced Modeling Networks

Joseph C. Coughlan
Mail Stop 242-4
NASA Ames Research Center
Moffett Field, CA 92035-1000

Eric P. Bjorkstead
Santa Cruz Laboratory, NOAA Fisheries
110 Shafer Road
Santa Cruz, CA 95060

Abstract—NASA’s Earth Science Enterprise has established the goal of developing a predictive capability for the Earth System. NASA uses the vantage point of space to provide information about Earth's land, atmosphere, ice, oceans, and biota that is obtainable in no other way. To enhance predictive capabilities, NASA is planning a sensor web to collect data across a range of spatio-temporal scales. The end-to-end process of data collection, data assimilation, biogeochemical modeling and prediction is inseparable and predominately enabled by software. Software transforms the raw data into usable products and information and software disseminates these products to end-users. New information system technologies are needed to enable better prediction, flexible data assimilation and model coupling to build integrated Earth system models. Advancement of our modeling capabilities will require not only faster processing, but new programming methods, new algorithms, high-speed data pipelines, and interoperable architectures that allow the networking of diverse Earth System models.

I. INTRODUCTION

NASA’s Earth Science Enterprise Missions contribute to the multi-agency United States Global Change Research Program (USGCRP) and integrate with international scientific activities such as the World Climate Research Program and the International Geosphere-Biosphere Programme. The overall mission of NASA’s Earth Science Enterprise (ESE) is to enable improved prediction capability for the highly integrated and dynamic Earth system by developing a scientific understanding of the Earth system and its response to natural or human-induced changes. The USGCRP is also supported through NASA’s establishment of a long term commitment to improved Earth Science monitoring and prediction that relies heavily on air and space borne observations (data) of the Earth as well as field validation campaigns.

These data are spatio-temporally heterogeneous, collected by a variety of instruments and of immense volume and dimensionality. The raw data require extensive processing prior to their use as biophysical parameters in support of scientific inquiry, policy formulation and resource management. The processing of large data holdings requires significant computational resources and scarce expertise in the interdisciplinary Earth and computational sciences. There are significant information system challenges posed by mission science requirements.

In this new century there will be increasing societal needs for seasonal and interannual climate predictions, for environmental assessments, and for sophisticated model-assimilated data sets to aid in the quantification of the biogeochemical processes that determine the balance of environmental parameters (i.e. temperature, water, winds, ozone, productivity, etc.). Many projects meeting these goals have grown out of basic research activities that have expanded to take on the responsibility of providing products to a broader community [1]. Sensor-web observations (data) and science models will need to be rapidly and cost effectively transferred into networked production systems to build products and assessments for public and private use.

II. MODELING

Models are essential tools for the development of scientific understanding. Modeling refers to those activities involved in building, applying, and validating biogeochemical models in software. The on-going refinement and development of new computational models that can simulate the dynamics of the Earth system is critical for the USGCRP. Models can be used in hind casting experiments to test hypothesis of how the Earth system behaves; and, models can be run in predictive mode to simulate the response of the Earth system to scenarios of future forcing and feedbacks on these forces by Earth system responses. These simulation activities are critical to providing the environmental assessments used to synthesize Earth science results and provide information to policy and decision makers [1].

For purposes of discussing information technology, modeling can be roughly categorized as discovery or production. Discovery modeling typically is PI lead, often funded with grants, and oriented towards discovery and scientific inquiry of fundamental mechanisms within a discipline. Production modeling is community lead, interdisciplinary, and driven by the need to generate standard products, such as forecasts and monitoring the productivity of the Earth. Often called high-end modeling, it requires larger
teams, budgets and computing resources, and often undertakes the unconstrained modeling of long-term scenarios.

A. Discovery Modeling

Discovery modeling finds new relationships and interactions by dividing, isolating and understanding specific components of the Earth System. This incremental approach allows scientists to cope with the complexity of environmental phenomena, target specific important processes, and adapt solutions to available computational resources. Standard data products from other domains are used to interface with the system being studied. Data may be obtained with a network link to a source, but more often input data reside locally and there is little need to access current data in real-time. The models are mechanistic and are built to convey understanding. A mechanistic model computes intermediate variables and states that correspond to the measurable system, and when compared to observations, help verify model behavior. The system being studied is decomposed into basic empirical or geophysical relationships. These basic algorithms reproduce behavior observed in the data and, when integrated, implicitly represent hypotheses about the system.

1) Data volume and dimensionality

The process of analyzing data to discover relationships for modeling is labor intensive and costly. Scientists are overwhelmed by the sheer volume of data collection enabled by modern technology [2]. A sensor-web will increase the potential for more data collection therefore, software is essential to aid the scientist and reduce data volume. Any algorithms used to aid the scientist and reduce data volume must originate in the discovery process before they can be implemented in the data processing or moved on-board.

2) Knowledge discovery in databases

Knowledge Discovery in Databases (KDD) is an interdisciplinary activity that automates the identifying of patterns and structure in large databases for discovering novel features and algorithms [1]. KDD involves visualization, artificial intelligence, knowledge management, and data mining (database, statistics and machine learning). The process is incremental and begins with selecting a hypothesis or phenomena to explore. There is a data cleansing and preprocessing step to fill in missing data, account for noise in the data and cope with time series. Data reduction in size and dimensionality is often necessary and can include extracting high-level features in place of using raw data (e.g. extract and mine the trajectory of cyclones instead of mining the imagery). Data mining is the complex step where the science goals must match the data, the mining method and the desired form of the new algorithm (regression, decision tree, classification rules, etc.). After mining, patterns must be interpreted (animated, plotted, visualized, etc.), and KDD steps repeated to refine, concisely summarize and catalog the results in relation to existing knowledge (and check for consistency with existing knowledge) [3].

Feature extraction can transform massive, low-level data into smaller, higher-level feature descriptions such as replacing a series of high-resolution images with the (x, y) tracking of a cyclone eye over time. Feature extraction methods are candidates for space-based processing if the goal is to reduce the data volume prior to transmission or to autonomously task the sensor-web to collect higher resolution data in the path of the cyclone to improve the inputs to storm-tracking models [3]. Therefore, specialized algorithms or biased sampling schemes are needed because in science rare but important classes may occur only with very low probability and appear as noise [3]. These algorithms can be run as data are collected, as data stream into the archive or as data are serendipitously extracted from the archive to fulfill an order. Scalable, crafted algorithms are necessary to operate on large databases and must be understandable since findings need to be interpreted as knowledge or explained [3].

3) Automated programming

Low-level languages (e.g. FORTRAN, C++, JAVA) impede progress because they require the problem description to be expressed with the problem solution and detailed control structures such as loops and parallelism. Graphical based programming reduces program complexity but is still problematic. Even with dedicated libraries and middleware, there are limits to the degree these kinds of methods can facilitate the construction of science software without further aids [4].

Researchers have prototyped techniques to automate the construction of efficient data analysis software from a concise problem description expressed in code. Given a problem where data sources are intermixed and signals to be identified, separated and modeled, systems can automatically separate the data and find optimal algorithms, either symbolically or numerically, reproducing data from each source. These systems also simultaneously generate compliant, detailed documentation and efficient, maintainable code implementing these solutions. One line of code describing the problem translates, on average, to 30 lines of C describing the algorithm solution [4].

B. Production models

The technologies that support the discovery process are germane to production modeling however production systems pose additional challenges. As successful discovery activities mature, they can provide products to assess impacts on the system of study. Today there are serious deficiencies in the science community’s ability to provide the necessary products for climate assessment [1]. Barriers include processing limitations, the difficulty of integrating new scientific models, competing for scarce talent with the commercial sector, costly computing resources and, implementation of these software on ever evolving, distributed computer architectures.
Developing technologies can help production modeling.

1) **High-end computing**

The high performance computing industry is fundamentally changing due to Moore's Law and this change has a short-term, negative impact on production modeling in Earth science [1]. Parallel computers are now built with commodity processors and components. While the benchmarks of these single image systems are impressive; scientists suffer from a significant usability gap and are not achieving needed performance [1][5].

Automation must help implement and integrate models by abstracting the hardware, automatically finding parallelisms in code, and reducing the labor need to write, link and modify efficient codes. Experimental languages can find parallelisms in dynamic programs such as the quicksort (programs where the data are dynamic and impact program execution and parallelism) [5]. New languages eliminate the need to define detailed control structures in the problem solution and solutions are generated automatically in the form of documented, maintainable C code [4][5]. The challenge is to automate the scheduling of the program elements on the processors. The benefit of automation is that it scales beyond the ability of humans to remember, recognize and apply all optimizations on code. Intelligent compilers and concise languages can reduce the labor and hardware expertise for high-end computers just as today's optimizing compilers surpassed the optimizing skills possessed by programmers in the early 80's [5].

2) **Human Centered Computing and Collaboration**

Human collaboration is still necessary due to the limitations of automation and software systems. Collaboration technologies facilitate the formation of remote teams improving efficiency and human computer interaction [2]. The USGCRP's multi-agency culture supports discovery-driven research activities but is not well suited to support a more product-oriented activity. A host of sub-critical efforts resides in the various agencies, and currently there is no effective means to allow these disparate groups to collaborate and organize [1]. Software and high speed networking infrastructure required by a sensor web can enable remote collaboration activities, given the business model is modified to encourage close inter-team collaboration.

III. **Pipelines and Protocols**

A sensor web is a type of real-time, widely distributed instrument system that extends the data network into space and enables satellites to communicate and interact. Similar systems are being developed on the ground, such as those built in support of medical science research and collaboration. These environments require, easy administration, enforceable user conditions and access control for all sensor and data elements [6]. The resources used are dynamically schedulable and the system must be designed to adapt for varying conditions in the distributed environment.

Automated methods must manage data streams and automated control and guidance systems are necessary for enabling remote operations and complex resource scheduling and reservation capabilities [6].

Traditional network protocols move bits between locations, however future protocols will need to be aware of the application and specifically support the application in a distributed framework. A successful protocol interface must be simple, well defined and stable [6]. Currently, data transmission protocols (TCP) and streaming protocols such as streaming media are maturing to support increasing bandwidth and stream sizes. There are emerging protocols, such as CORBA, that support real-time instrumentation and Java/RMI for data intensive applications. More research is needed to support protocols that can maintain memberships of process groups in an open network where there are unknown and uncooperative users. New protocols should support distributed parallel processing over clusters, scalable multicast protocols, and protocols for intergroup data sharing. In the future, flow and congestion control and latency problems must be resolved. Distributed object protocols are needed for heterogeneous computing systems to maintain the integrity and lineage of replicated information across archives. These must extend end-to-end from the ground to space and airborne platforms. Security, data consistency, and reliability are essential [6].

IV. **Summary**

A sensor web is a real-time, widely distributed instrument system designed to collect data and improve the capability to predict earth system responses to perturbations. Earth system simulation models combine atmospheric, oceanic, land-surface, cryospheric and, biological models and observations. Processing, pipelines and protocols help implement this distributed modeling framework and provide end-to-end information services.

V. **Acknowledgment**

We thank Granville Paulus, George Komar and Edwardo Torres for the invitation to participate in the Earth Science technology planning and Dr. Coughlan thanks the help provided by the staff of the Information Science Directorate of NASA Ames Research Center.

References