Planning Optimal Paths for Multiple Robots on Graphs

Jingjin Yu Steven M. LaValle

Abstract—In this paper, we study the problem of optimal multi-robot path planning (MPP) on graphs. We propose two multflow based integer linear programming (ILP) models that compute minimum last arrival time and minimum total distance solutions for our MPP formulation, respectively. The resulting algorithms from these ILP models are complete and guaranteed to yield true optimal solutions. In addition, our flexible framework can easily accommodate other variants of the MPP problem. Focusing on the time optimal algorithm, we evaluate its performance, both as a stand alone algorithm and as a generic heuristic for quickly solving large problem instances. Computational results confirm the effectiveness of our method.

I. INTRODUCTION

Planning collision-free paths for multiple robots, an easily stated yet difficult problem, has been actively studied for decades [4, 13, 14, 21, 23, 25, 26, 29, 30, 33]. The hardness of the problem mainly resides with the coupling between the robots’ paths which leads to an enormous state space and branching factor. As such, algorithms that are both complete and (distance) optimal, such as the A∗ [9] algorithm and its variants, do not perform well on tightly coupled problems beyond very small ones. On the other hand, faster algorithms for finding the paths generally do not provide optimality guarantees: Sifting through all feasible path sets for optimal ones greatly increases the search space, which often makes these problems intractable.

In this paper, we investigate the problem of planning optimal paths for multiple robots with individual goals. The robots have identical but non-negligible sizes, are confined to some arbitrary connected graph, and are capable of moving from one vertex to an adjacent vertex in one time step. Collision between robots is not allowed, which may occur when two robots attempt to move to the same vertex or move along the same edge in different directions. For this general setting, we propose a network flow based integer linear programming (ILP) model for finding robot paths that are time optimal or distance optimal. Our time optimality criterion seeks to minimize the number of time steps until the last robot reaches its goal; distance optimality seeks to minimize the total distance (each edge has unit distance) traveled by the robots. Taking advantage of the state of the art ILP solvers (Gurobi is used in this paper), our method can plan time optimal, collision-free paths for several dozens of robots on graphs with hundreds of vertices within minutes.

As a universal subroutine, collision-free path planning for multiple robots finds applications in tasks spanning assembly [8, 16], evacuation [19], formation control [2, 17, 22, 24, 28], localization [6], object transportation [15, 20, 7], search and rescue [10], and so on. Given its importance, path planning for multi-robot systems has remained as a subject of intense study for many decades. Given the vast size of the available literature, we will only mention related research on discrete MPP and refer the readers to [3, 11, 12] and the references therein for a more comprehensive review of the subject.

From an algorithmic perspective, discrete MPP is a natural extension of the single robot path planning problem: One may combine the state spaces of all robots and treat the problem as a planning problem for a single robot. A∗ algorithm can then be used to compute distance optimal solutions to these problems. However, since naive A∗ scales poorly due to the curse of dimensionality, additional heuristic methods were proposed to improve the computational performance. One of the first such heuristics, Local Repair A∗ (LRA∗) [33], plans robot paths simultaneously and performs local repairs when conflicts arise. Focusing on fixing the (locality) shortcomings of LRA∗, Windowed Hierarchical Cooperative A∗ (WHCA∗) [23] proposed to use a space-time window to allow more choices for resolving local conflicts while limiting the search space size at the same time. For additional heuristics exploring various specific local and global features, see [14, 21, 26].

Formulations of MPP problems with optimality guarantee have also been studied. The most general optimality criterion is the total path length traveled by all robots, which is consistent with the distance heuristic used by the A∗ algorithm. Since A∗ is the best possible among all such algorithms for finding distance optimal solutions, one should not expect complete and true optimal algorithms to exist that perform much better than the basic A∗ algorithm in all cases. Nevertheless, this does not prevent algorithms from quickly solving certain instances optimally. One such algorithm that is also complete, MGSx, is presented in [25] (note that the grid world formulation in [25], which allows diagonal moves in general, even in the presence of diagonal obstacles, does not carry over to general graphs or geometric models in robotics). For time optimality, for a version of the MPP problem that resembles our formulation more closely, it was shown that finding a time optimal solution is NP-hard [27], implying that our formulation is also intractable [31]. Finally,
it was shown that finding the least number of moves for the $N \times N$-generalization of the 15-puzzle is NP-hard [18]. Here, time optimality equals distance optimality, which is not the case in general.

The main contributions of this paper are twofold. First, adapting the constructions from [32], we develop ILP models for solving time optimal and distance optimal MPP problems. The resulting algorithms are shown to be complete. Our approach is quite general and easily accommodates other formulations of the MPP problems, including that of [25]. Second, we provide thorough computational evaluations of our models’ performance: With a state-of-the-art ILP solver, our models are capable of solving large problem instances with few dozens of robots fairly fast. Such a result is in some sense the best we can hope for because the best possible algorithm for such problems cannot run in polynomial time unless $P = NP$. As an added bonus, we also show that the (time optimal) algorithm works well as a subroutine for quickly solving MPP problems (non-optimally).

The rest of the paper is organized as follows. We provide problem definitions in Section II, along with a motivating example. Section III relates MPP to multiflow, establishing the equivalence between the two problems. In Section IV, ILP models are provided for obtaining time optimal and distance optimal solutions, respectively. Section V is devoted to briefly discussing basic properties of the n^2-puzzle, which is an interesting benchmark problem on its own. We evaluate the computational performance of our algorithm in Section VI and conclude in Section VII.

II. MULTI-ROBOT PATH PLANNING ON GRAPHS

A. Problem Formulation

Let $G = (V,E)$ be a connected, undirected, simple graph (i.e., no multi-edges), in which $V = \{v_i\}$ is its vertex set and $E = \{e_{ij}, e_{jk}\}$ is its edge set. Let $R = \{r_1, \ldots, r_n\}$ be a set of robots that move with unit speeds along the edges of G, with initial and goal locations on G given by the injective maps $x_i: R \rightarrow V$, respectively. The set R is effectively an index set. A path or scheduled path is a map $p_i : \mathbb{Z}^+ \rightarrow V$, in which $\mathbb{Z}^+ := \mathbb{N} \cup \{0\}$. Intuitively, the domains of the paths are discrete time steps. A path p_i is feasible for a single robot r_i if it satisfies the following properties: 1. $p_i(0) = x(r_i)$; 2. For each i, there exists a smallest $k_{i}^{\text{min}} \in \mathbb{Z}^+$ such that for all $k \geq k_{i}^{\text{min}}$, $p_i(k) \equiv x(r_i)$; 3. For any $0 \leq k < k_{i}^{\text{min}}$, $(p_i(k), p_i(k+1)) \in E$ or $p_i(k) = p_i(k+1)$. We say that two paths p_i, p_j are in collision if there exists $k \in \mathbb{Z}^+$ such that $p_i(k) = p_j(k)$ (collision on a vertex, or meet) or $(p_i(k), p_i(k+1)) = (p_j(k+1), p_j(k))$ (collision on an edge, or head-on). If $p(k) = p(k+1)$, then the robot stays at vertex $p(k)$ between the time steps k and $k+1$.

Problem 1 (MPP on Graphs) Given (G, R, x_1, x_G), find a set of paths $P = \{p_1, \ldots, p_n\}$ such that p_i's are feasible paths for respective robots r_i’s and no two paths p_i, p_j are in collision.

A natural criterion for measuring path set optimality is the number of time steps until the last robot reaches its goal. This is sometimes called the makespan, which can be computed from $\{k_{i}^{\text{min}}\}$ for a feasible path set P as

$$T_P = \max_{1 \leq i \leq n} k_{i}^{\text{min}}.$$

Another frequently used objective is distance optimality, which counts the total number of edges traveled by the robots. We point out that distance optimality and time optimality cannot be satisfied at the same time in general: In Fig. 1, let the dotted straight line have length t and the dotted arc has length $1.5t$ from some large even number t. The four solid line segments are edges with unit length. Assuming that robot 1, 2 are to move from the locations marked with solid circles to the locations marked with gray dotted circles. Time optimal paths take $1.5t + 2$ time steps with a total distance of $2.5t + 4$; distance optimal paths take $2t + 3$ time steps with a total distance of $2t + 4$.

![Fig. 1. Time optimality and distance optimality cannot be satisfied simultaneously for this setup.](image)

B. A Motivating Example

To better characterize what we solve in this paper, look at the example in Fig. 2. We call this problem a 9-puzzle, which is a variant of the 15-puzzle [18]. Given the robots as numbered in Fig. 2(a), we want to get them into the state (configuration is also used in this paper to refer to the same, depending on the context) given in Fig. 2(b) (such a configuration is often referred to as row major ordering). Coming up with a feasible solution for such a highly constrained problem is non-trivial, let alone solving it with an optimality guarantee. The time optimal algorithm we present in this paper solves this problem instance under 0.1 second. The solution is given in Fig. 3. The time optimality of the solution is evident: It takes at least four steps for robot 9 to reach its goal.

![Fig. 2. a) A 9-puzzle problem. b) The desired goal state.](image)

![Fig. 3. A 4-step solution from our algorithm. The directed edges show the moving direction of the robots at the tail of the edges.](image)
algorithm. For surveys on network flow, see [1, 5]. A network \(N = (G, c_1, c_2, S) \) consists of a directed graph \(G = (V, E) \) with \(c_1, c_2 : E \rightarrow \mathbb{Z}^+ \) as the maps defining the capacities and costs on edges, respectively, and \(S \subset V \) as the set of sources and sinks. We let \(S^+ = S^+ \cup S^- \), with \(S^+ \) denoting the set of sources and \(S^- \) denoting the set of sink vertices. For a vertex \(v \in V \), let \(\delta^+(v) \) (resp. \(\delta^-(v) \)) denote the set of edges of \(G \) going to (resp. leaving) \(v \). A feasible (static) \(S^+, S^- \)-flow on this network \(N \) is a map \(f : E \rightarrow \mathbb{Z}^+ \) that satisfies edge capacity constraints,

\[
\forall e \in E, \quad f(e) \leq c_1(e),
\]

the flow conservation constraints at terminal vertices,

\[
\forall v \in V \setminus S, \quad \sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) = 0,
\]

and the flow conservation constraints at terminal vertices,

\[
F(f) = \sum_{v \in S} \left(\sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) \right) = \sum_{v \in S} \left(\sum_{e \in \partial^+(v)} f(e) - \sum_{e \in \partial^-(v)} f(e) \right).
\]

The quantity \(F(f) \) is called the \textit{value} of the flow \(f \). The classic (single-commodity) \textit{maximum flow} problem asks the question: Given a network \(N \), what is the maximum \(F(f) \) that can be pushed through the network?

The above formulation concerns a single commodity, which corresponds to all robots being inter exchangeable. For MPP, the robots are not inter exchangeable and must be treated as different commodities. \textit{Multi-commodity flow} or \textit{multiflow} captures the problem of flowing different types of commodities through a network. Instead of having a single flow function \(f \), we have a flow function \(f_i \) for each commodity \(i \). Again, the maximum flow problem can be posed for a multiflow setup.

\subsection*{B. Equivalence between MPP and multiflow}

Viewing robots as commodities, we may connect MPP and multiflow. This relationship (Theorem 2) was first stated in [32]. To make the presentation clear, we use as an example the simple graph \(G \) in Fig. 4(a), with initial locations \(\{s^+_i\}, i = 1, 2 \) and goal locations \(\{s^-_i\}, i = 1, 2 \). An instance of Problem 1 is given by \((G, \{r_1, r_2\}, x_l : r_i \rightarrow s^+_i, x_G : r_1 \rightarrow s^-_1) \).

We now convert this problem to a network flow problem, \(N^\prime = (G', c_1, c_2, S^+ \cup S^-) \). Given the graph \(G \) and a natural number \(T \), we create \(2T + 1 \) copies of vertices from \(G \), with indices 0, 1, \(T' \), \ldots, as shown in Fig. 5. For each vertex \(v \in G \), denote these copies \(v(0) = v(0)', v(1), v(1)', v(2), \ldots, v(T)' \). For each edge \((u, v) \in G \) and time steps \(t, t+1, 0 \leq t < T \), add the gadget shown in Fig. 4(b) between \(u(t)', v(t)' \) and \(u(t+1), v(t+1)' \) (arrows from the gadget are omitted from Fig. 5 since they are small). For the gadget, we assign unit capacity to all edges, unit cost to the horizontal middle edge, and zero cost to the other four edges. This gadget ensures that two robots cannot travel in opposite directions on an edge in the same time step. To finish the construction of Fig. 5, for each vertex \(v \in G \), we add one edge between every two successive copies (i.e., we add the edges \((v(0), v(1)), (v(1), v(1)'), \ldots, (v(T), v(T)')\)). These correspond to the green and blue edges in Fig. 5. For all green edges, we assign them unit capacity and cost; for all blue edges, we assign them unit capacity and zero cost.

Fig. 5 (with the exception of edges \(e_1 \) and \(e_2 \), which are not relevant until Section IV), called a \textit{time-expanded network} [1], is the desired \(G' \). For the set \(S \), we may simply let \(S^+ = \{v(0) : v \in \{s^+_i\}\} \) and \(S^- = \{v(T) : v \in \{s^-_i\}\} \). The network \(N^\prime = (G', c_1, c_2, S^+ \cup S^-) \) is now complete; we have reduced Problem 1 to an integer maximum multiflow problem on \(N^\prime \) with each robot from \(R \) as a single type of commodity, summarized in the following theorem (for complete proof, see the full version of this paper).

\begin{theorem}
Given an instance of Problem 1 with input parameters \((G, R, x_l, x_G)\), there is a bijection between its solutions (with maximum number of time steps up to \(T \)) and the integer maximum multiflow solutions of flow value \(n \) on the time-expanded network \(N^\prime \) constructed from \((G, R, x_l, x_G)\) with \(T \) time steps.
\end{theorem}

\subsection*{C. Accommodating other formulations}

Our network flow based approach for encoding the MPP problem is fairly general; we illustrate this using an example. The grid world formulation from [25] allows (single) diagonal crossings. That is, for vertices \(v_1, \ldots, v_4 \) on the four corners of a square cell with \(v_1, v_3 \) and \(v_2, v_4 \) diagonal to each other, respectively, it is possible for a robot to move from \(v_1 \) to \(v_3 \) provided that \(v_3 \) is unoccupied and the \(v_2 \)-\(v_4 \) diagonal is not used in the same time step. To include this constraint in the ILP model, we may simply add the gadget structure in Fig. 6 to the time-expanded network construction. The inclusion of the gadget will allow a single diagonal crossing; the extra paths do not create an issue since no two robots can go through a single vertex at the same time step (enforced by the blue dotted edges in Fig. 5).
Using similar technique, it is not hard to show the following (see full version of paper for proofs).

Proposition 3 Algorithm MINMAKESPAN is complete.

B. Distance optimality

Distance optimality objective can be encoded using minimum cost maximum multiflow. Constraints (4) and (5) remain; to force a maximum flow, let \(x_{ij} = 1 \) for \(1 \leq i \leq n \). The objective is given by

\[
\min_{e_j \in G', j = 1} \sum_{1 \leq i \leq n} c_2(e_j) \cdot x_{ij}.
\]

The value given by (7), when feasible, is the total distance of all robots’ paths. Let \(T \) denote the optimal \(T \) produced by MINMAKESPAN (if one exists), then a distance optimal solution exists in a time-expanded network with \(T = nT_i \) steps. Calling this algorithm MINTOTALDIST (distance optimal MPP), we have

Proposition 4 Algorithm MINTOTALDIST is complete.

Due to the large number of steps needed in the time-expanded network, MINTOTALDIST, in its current form, is not very fast in solving problems with many robots. Therefore, our evaluation in this paper focuses on MINMAKESPAN which, on the other hand, is fairly fast in solving some very difficult problems. MINTOTALDIST, however, still proves useful in providing time optimal and near distance optimal solutions using the outputs of MINMAKESPAN.

V. Properties of the \(n^2 \)-puzzle

The example problem from Fig. 2 easily extends to an \(n \times n \) grid; we call this class of problems the \(n^2 \)-puzzle. Such problems are highly coupled: No robot can move without at least three other robots moving at the same time. At each step, all robots that move must move synchronously in the same direction (per cycle) on one or more disjoint cycles (see e.g., Fig. 3). To put into perspective the computational results on \(n^2 \)-puzzles that follow, we make a characterization of the state structure of the \(n^2 \)-puzzle for \(n \geq 2 \) (the case of \(n = 2 \) is trivial).

Fig. 7. A 3-step procedure for exchanging robots 8 and 9.

Proposition 5 All states of the 9-puzzle are connected via legal moves.

Proof. We show that any state of a 9-puzzle can be moved into the state shown in Fig. 2(b). From any state, robot 5 can be easily moved into the center of the grid. We are left to show that we can exchange two robots on the border without affecting other robots. This is possible due to the procedure illustrated in Fig. 7. \(\square \)

Using similar technique, it is not hard to show the following (see full version of paper for proofs).
Theorem 6 All states of an \(n^2 \)-puzzle, \(n \geq 3 \) are connected via legal moves.

Corollary 7 All instances of the \(n^2 \)-puzzle, \(n \geq 3 \), are solvable.

VI. SOLUTIONS AND EVALUATION

Our experimentation in this paper focuses on MINMAKESPAN with the main goal being evaluating the comparative efficiency of our approach rather than pushing for best computational performance. As such, our implementation is Java based and did not directly take advantage of multi-core technology. We note that, Gurobi, the ILP solver used in our implementation, can engage multiple cores automatically for hard problems. We ran our code on an Intel Q6600 quad-core machine with a 4GB Java VM.

A. Time optimal solution to \(n^2 \)-puzzles

The first experiment we performed was evaluating the efficiency of the algorithm MINMAKESPAN for finding time optimal solutions to the \(n^2 \)-puzzle for \(n = 3, 4, 5 \), and 6. We ran Algorithm MINMAKESPAN on 100 randomly generated \(n^2 \)-puzzle instances for \(n = 3, 4, 5 \). For the 9-puzzle, computation on all instances completed successfully with an average computation time of 1.36 seconds per instance. To compare the computational result, we implemented a (optimal) BFS algorithm. The BFS algorithm is heavily optimized: For example, cycles of the grid are precomputed and hard coded to save computation time. Since the state space of the 9-puzzle is small, the BFS algorithm is capable of optimally solving the same set of 9-puzzle instances with an average computation time of about 0.89 seconds per instance.

Once we move to the 16-puzzle, the power of general ILP solvers becomes evident. MINMAKESPAN solved all 100 randomly generated 16-puzzle instances with an average computation time of 18.9 seconds. On the other hand, the BFS algorithm with a priority queue that worked for the 9-puzzle ran out of memory after a few minutes. As our result shows that an optimal solution for the 16-puzzle generally requires 6 time steps, it seems natural to also try bidirectional search, which cuts down the total number states stored in memory. To complete such a search, one side of the bidirectional search generally must reach a depth of 3, which requires storing about \(5 \times 10^8 \) states (the branching factor is over 1000 per step), each taking 64 bits of memory. This turns out to be too much for a 4GB Java VM. A bidirectional search ran out of memory after about 10 minutes in general.

For the 25-puzzle, without a good heuristic, bidirectional search cannot explore a tiny fraction of the fully connected state space with about \(10^{28} \) states. On the other hand, MINMAKESPAN again consistently solves the 25-puzzle, with an average computational time under 2 hours over 100 randomly created problems. We also briefly tested MINMAKESPAN on the 36-puzzle. While we had some success here, MINMAKESPAN generally does not seem to solve a randomly generated instance of the 36-puzzle within 24 hours, which has \(3.7 \times 10^{45} \) states and a branching factor of well over \(10^6 \).

B. Time optimal solutions for grid graphs

For problems in which not all graph vertices are occupied by robots, MINMAKESPAN can handle much larger instances. In a first set of tests on this subject, a grid size of \(20 \times 15 \) is used with varying percentage of obstacles (simulated by removed vertices) and robots for evaluating the effect of these factors. The computation time (in seconds) and the average number of optimal time steps (in parenthesis) are listed in Table I. The numbers are averages over 10 randomly created instances. For each run, a maximum of 1000 seconds is allowed (such limits, somewhat arbitrary, were chosen to manage the expected running time of the entire set of experiments; our complete algorithms should terminate eventually). Entries with superscript numbers suggest the 10 runs did not all finish within the given time. The superscript numbers represent the successful runs on which the statistics were computed. “N/A” means no instance finished within the allowed time. From the results, we observe that the percentage of randomly placed obstacles does not affect the problem difficulty, as measured by computational time, in a monotonic way. On one hand, more obstacles remove more vertices from the grid, making the problem size smaller, reducing the computational difficulty. On the other hand, as more obstacles are introduced, the reduced connectivity of the graph makes the problem harder. In particular, the \(20 \times 15 \) grid setting suddenly becomes a hard problem with 30% obstacles. The difficulty is also reflected by the average number of steps in an optimal solution: Longer time means reduced availability of alternative paths.

<table>
<thead>
<tr>
<th>% obs</th>
<th>Number of robots</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10, 20, 30, 40, 50</td>
</tr>
<tr>
<td>10</td>
<td>20, 30, 40, 50</td>
</tr>
<tr>
<td>15</td>
<td>25, 30, 40, 50</td>
</tr>
<tr>
<td>20</td>
<td>30, 40, 50, 60</td>
</tr>
<tr>
<td>25</td>
<td>35, 40, 50, 60</td>
</tr>
</tbody>
</table>

In a second test on even larger problems, \(32 \times 32 \) grids with 20% obstacles were tried. For between 10 and 50 robots with an increment of 10, 10 random instances each were created; each instance is allowed to run a maximum of half an hour. The statistics, similarly composed as that in Table I, is listed in Table II. We observe that the problem is similar in difficulty to the \(20 \times 15 \) grid setting with 25% obstacles, but much simpler than that with 30% obstacles.

C. Using MINMAKESPAN as a generic heuristic

In the last experiment, we exploit MINMAKESPAN as a generic heuristic for locally resolving path conflicts for
large problem instances. By generic, we mean that the heuristic is not coded to any specific robot/grid setting. In our algorithm, paths are first planned for single robots (ignoring other robots). Afterwards, the robots are moved along these paths until no further progress can be made. We then detect on the graph where progress are stalled and resolve the conflict locally using MINMAKESPAN. For every conflict, we apply MINMAKESPAN to its neighborhood of distance 2. The above steps are repeated until a solution is found. For evaluation, we ran the above algorithm on a 32 × 32 grid with 20% obstacles. We allow each instance to run a maximum of 30 seconds. The results, each as an average over 100 runs for a certain number of robots, are listed in Table III. While we did not make side-by-side comparisons with the literature due to (seemingly small but) important differences in problem formulation, the computation time and completion rate of our algorithm appear comparable with the state of the art results from other authors.

VII. CONCLUSION

In this paper, we introduced a multiflow-based ILP algorithm for planning optimal, collision-free paths for multiple robots on graphs. We provided complete ILP algorithms for solving time optimal and distance optimal MPP problems. Our experiments confirmed that MINMAKESPAN is a feasible method for planning optimal paths for tightly coupled problems as well as for larger problems with more free space. Moreover, we showed that MINMAKESPAN can serve as a good heuristic for solving large problem instances efficiently. For distance optimality, MINTOTALDIST, when combined with MINMAKESPAN, produces time optimal solutions that are often near distance optimal.

REFERENCES