A Stable Optic-Flow Based Method for Tracking Colonoscopy Images

Jianfei Liu
The University of North Carolina at Charlotte
Charlotte, North Carolina
jlil1@uncc.edu

Kalpathi Subramanian
The University of North Carolina at Charlotte
Charlotte, North Carolina
krs@uncc.edu

Terry Yoo
National Library of Medicine, NIH
Bethesda, Maryland
yoo@nlm.nih.gov

Robert Van Uitert
National Library of Medicine, NIH
Bethesda, Maryland
robert.vanuitert@gmail.com

Abstract

In this paper, we focus on the robustness and stability of our algorithm to plot the position of an endoscopic camera (during a colonoscopy procedure) on the corresponding pre-operative CT scan of the patient. The colon has few topological landmarks, in contrast to bronchoscopy images, where a number of registration algorithms have taken advantage of features such as anatomical marks or bifurcations. Our method estimates the camera motion from the optic-flow computed from the information contained in the video stream. Optic-flow computation is notoriously susceptible to errors in estimating the motion field. Our method relies on the following features to counter this, (1) we use a small but reliable set of feature points (sparse optic-flow field) to determine the spatio-temporal scale at which to perform optic-flow computation in each frame of the sequence, (2) the chosen scales are used to compute a more accurate dense optic flow field, which is used to compute qualitative parameters relating to the main motion direction, and (3) the sparse optic-flow field and the main motion parameters are then combined to estimate the camera parameters. A mathematical analysis of our algorithm is presented to illustrate the stability of our method, as well as comparison to existing motion estimation algorithms. We present preliminary results of using this algorithm on both a virtual colonoscopy image sequence, as well as a colon phantom image sequence.

1. Introduction

Colorectal cancer is a leading cause of cancer and cancer-related mortality in the United States[1]. The survival rate can be significantly improved through early cancer detection and treatment. Optical Colonoscopy (OC) is a minimally invasive screening and cancer detection tool, that involves guiding a long, flexible endoscope into the colon, allowing visual inspection and removal of inflamed tissue, abnormal growth (also known as a polyp), and ulcers. However, OC is an exploratory procedure and depends on the physician’s skills and experience, and can miss polyps[23]. A newer technology, Virtual Colonoscopy (VC)[30, 21] is capable of providing interactive views of the interior of the colon for surgery planning and diagnosis. VC has limitations: lesions less than 5mm cannot be detected, and, currently, there is no means to track the conventional colonoscopy images and the pre-segmented virtual colonoscopy images. This is necessary for effective and convenient use of VC images during a colonoscopy procedure.

The past decade has seen a considerable body of work in registering optical and virtual bronchoscopy images [20, 18, 31, 10, 29, 11, 28, 12]. However, this task exploits anatomical marks, bifurcations and other structural features, as well as repeated 2D and 3D registrations to align the virtual and optical images. Unlike the bronchi of the lungs, the colon has no bifurcations or other anatomical features for navigation. As the goal of our work is to track the endoscopic camera so as to be in the vicinity of landmarks such as polyps or a particular fold, the requirements are somewhat more relaxed, unlike the registration algorithms typically used in bronchoscopy tracking to guide needle biopsy procedures. Given these considerations, optic flow based schemes are a reasonable approach in the absence of other visual cues.

Optic flow represents the distribution of apparent velocities of brightness patterns in an image[19], and is used to estimate the projected motion of the relative displacement between the camera and the objects. There are a large number of methods to compute optical flow, including differen-
tial techniques[19, 27, 36, 7], region-based matching[4, 25], and phase-based methods[13, 15]. Detailed reviews of optic flow computation can be found in [5, 6, 14]. Optic flow computation techniques have led to tracking algorithms, generally referred to as egomotion determination. Bruss[8] proposed a linear-square minimization scheme to search the 3D motion parameters that best approximate the measured flow field. In order to be less sensitive to inaccuracies and ambiguities in optic flow fields, Ador[2, 3] proposed a decomposition scheme to compute the motion parameters according to an estimated residual. Nevertheless, these methods are still sensitive to the accuracy of the underlying flow field. Matrix perturbation theory[33] can be used to illustrate the sensitivity of the estimation matrix used in computing motion parameters.

A number of researchers have used motion parallax to compute invariant properties of the flow field[22, 26], such as the focus of expansion (FOE), in order to improve the robustness of the tracking algorithms. The focus of expansion is defined as the projection of the camera’s translation axis on the image plane. Detection of the focus of expansion permits independent estimation of translation and rotation parameters, and the approach taken in [17, 32, 34].

In this work, we focus on the stability and robustness of our proposed algorithm for tracking optical and virtual colonoscopy images. Fig. 1 illustrates the steps involved in our approach. The key to our approach is to be able to compute invariant properties of the flow field[22, 26], such as the focus of expansion (FOE), in order to improve the robustness of the tracking algorithms. The focus of expansion is defined as the projection of the camera’s translation axis on the image plane. Detection of the focus of expansion permits independent estimation of translation and rotation parameters, and the approach taken in [17, 32, 34].

In this work, we focus on the stability and robustness of our proposed algorithm for tracking optical and virtual colonoscopy images. Fig. 1 illustrates the steps involved in our method. The key to our approach is to be able to compute an accurate flow field, given the limitations and difficulties associated with colonoscopy images. Specifically, our method has the following 3 features that result in a stable tracking algorithm:

1. [Multi-Scale Approach:] We choose a small set of robust feature points (corner points) to compute a sparse optic flow field; an iterative scheme and a scale selection metric is proposed to compute optimal spatial and temporal scales for each image frame.

2. [Dense Flow Field and FOE Computation:] The computed scales are used to determine the dense optic flow field, which in turn is used to obtain the focus of expansion using a subdivision based method; qualitative motion information relating to the main motion direction is extracted. We illustrate comparisons of our approach to the direct approach to computing motion parameters from the accurate sparse flow field. We demonstrate mathematically and experimentally its sensitivity to flow field errors.

3. [Determining Camera Motion Parameters:] The qualitative features derived from the dense flow field and the accurate sparse flow field (step 1) are used to estimate the camera motion parameters. We illustrate the robustness of our tracking algorithm on two example datasets.

2. Methods

2.1. Optic-Flow Computation: A Multi-scale Approach

Our tracking algorithm begins by identifying a relatively small set of stable feature points and their corresponding optical flow, resulting in a sparse optic flow field. Moreover, the flow field is determined using a multi-scale approach.

Let \((u_x, u_y)\) define the flow vector at an image pixel \((x, y)\) at time \(t\). Then

\[
L(x, y, t) = L(x + u_x, y + u_y, t + 1)
\]

where \(L(x, y, t)\) is the scale-space representation of the original image \(I(x, y, t)\), \(\sigma, \tau\) are the spatial and temporal scale parameters, and

\[
L(x, y, t) = g(x, y, t; \sigma^2, \tau^2) * I(x, y, t)
\]

\[
g(x, y, t; \sigma^2, \tau^2) = e^{-\frac{(x^2 + y^2)}{2\sigma^2} - \frac{t^2}{2\tau^2}}
\]

Anisotropic Gaussian is applied to account for the differential sampling rates across the spatial and temporal dimensions. Unlike methods that consider spatial [24] or the temporal scale [37] individually, our approach is targeted at determining the optimal spatial and temporal scales for optic flow computation.

In order to reduce the ambiguities in corresponding pairs, corner points are chosen as feature candidates. Corner points are detected by the Harris matrix[16] defined as

\[
\mu = \begin{bmatrix}
L_x^2 & L_x L_y \\
L_x L_y & L_y^2
\end{bmatrix}
\]

where

\[
(L_x, L_y, L_t) = (\partial_x(L(x, y, t)), \partial_y(L(x, y, t)), \partial_t(L(x, y, t)))
\]
We are interested in corresponding pairs that exhibit maximum variance in the spatial domain and minimum difference along the temporal direction. We propose the following scale-space metric to achieve this,

$$\Theta = \frac{\int W G(x,y)(L(x,y,t) - L(x + u_x, y + u_y, t + 1))^2}{\int W G(x,y)(\sqrt{det(\mu) - \alpha * \text{Trace}(\mu)} + \beta)} \tag{6}$$

where α and β are constants. The measurement is performed within a window of size W to avoid the aperture problem[19], and $G(x,y)$ is its window function.

The numerator in Eq. 6 represents the similarity between corresponding pairs, while the denominator measures how distinct the selected features are in their local neighborhood. The smaller the response of Θ, the better the match. We use Eq. 6 as the basis for spatial and temporal scale selection. We argue that these characteristic spatial and temporal scales should also make Θ a local minimum in scale space. For implementation, the numerator can be converted into the iterative Lucas-Kanade algorithm [27] (Taylor series approximation), while the denominator is related to the Harris matrix, resulting in the following approximation to Eq. 6,

$$\Theta \approx \frac{\int W G(x,y)(L_x u_x + L_y u_y + L_t)^2}{\int W G(x,y)(\sqrt{det(\mu) - \alpha * \text{Trace}(\mu)} + \beta)} \tag{7}$$

An image sequence from virtual colonoscopy was used to examine the effectiveness of the scale selection metric. Ground truth, consisting of the exact motion field (Eq. 9) and depth values were respectively calculated from the known motion of the virtual camera and the Z-buffer. Scale selection results are illustrated in Fig. 2 and Table 1. Fig. 2d shows a response curve plotted as a function of the two spatial and temporal scale parameters. It can be seen that the response curve first decreases to a local minimum, and then gradually increases. There are also three navigation images overlaid with ground truth flow vectors (red) and the estimated flow vectors (blue). The small green cubes indicate the positions of the chosen feature points. Fig. 2(a), corresponding to point A in 2(d) shows the results with fine spatial and temporal scales, where large vectors deviate from the ground truth because the scales are not large enough to eliminate the noise or large intensity variance; in 2(c), which corresponds to point C in 2(d), small vectors diverge because the chosen scales are too coarse and small areas with varying motion are merged. Spatio-temporal scales at the local minima are a means to balance between these two extremes, and as seen in 2b (point B in 2(d)), generate flow vectors close to the ground truth.

Table 1 shows numerical results of the errors between the groundtruth and estimated flow vectors for various combinations of spatial and temporal scales. These scale values correspond to the points on the response curve in Fig. 2(d). 40 feature pairs were selected in this example. Their average, minimum, and maximum differences, in magnitude and direction between the estimated optical flow and ground truth, were calculated. In this example, the scale pair, (1.41, 0.71) or (2.0, 1.0) are the best choices and are around the local minima (Fig. 2d).

$$\varepsilon_{\text{magnitude}} = \frac{|u - v|}{||v||} \tag{8}$$

$$\varepsilon_{\text{direction}} = \frac{|u \cdot v|}{||u|| ||v||}$$

where u and v are estimated and groundtruth flow vectors.

2.2. Dense Flow Field and FOE Computation:

Given the characteristic spatial and temporal scales, they are used to compute a dense optic flow field, which is more accurate than if a single scale was chosen throughout the image sequence. We use Horn’s method [19] on the smoothed image sequence, using the optimal spatial and temporal smoothing parameters. Using the full flow field of the image also leads to a more robust algorithm to detect the focus of expansion. We use a subdivision based method[32] to detect the focus of expansion, which we describe next, preceded by a mathematical basis for our approach.

Fig. 3 shows the coordinate system of a moving camera. $T = (T_x, T_y, T_z)$ and $R = (\omega_x, \omega_y, \omega_z)$ represent the
translation and rotation vectors along the spatial dimensions.

Let the instantaneous coordinates of an object point P in camera coordinates be (X, Y, Z) and its projection point p in the image plane be (x, y). Geometrically, its optical flow is [19, 26]

$$
\begin{align*}
\mathbf{u}_x &= \frac{-T_x f + T_x x}{Z} + \omega_x \frac{xy}{f} - \omega_y \left(f + \frac{x^2}{f} \right) + \omega_z y \\
\mathbf{u}_y &= \frac{-T_y f + T_y y}{Z} + \omega_z \left(f + \frac{y^2}{f} \right) - \omega_y \frac{xy}{f} - \omega_x x
\end{align*}
$$

(9)

The motion parameters can be directly estimated from these equations, and the approach taken by Bruss and Horn[8], approximating the motion parameters by the estimated optic flow. This leads to the following linear system

$$
\mathbf{A} \mathbf{x} = \mathbf{b}
$$

(10)

where \mathbf{A} is a 6×6 system shown below, formed from integrating individual equations formed from each chosen feature candidate(using Eq. 9), \mathbf{x} is the unknowns, $\mathbf{T} = (T_x, T_y, T_z)$, $\mathbf{R} = (\omega_x, \omega_y, \omega_z)$, and \mathbf{b} are constants.

However, there are errors in the optical flow estimation that makes it impractical to directly solve this linear system. In Appendix A, perturbation theory is used to show the numerical problems and the resulting instabilities in using this approach. Fig. 4 shows the relationship between the absolute translation error of the first 150 images of a virtual colonoscopy image sequence. Notice the large translation errors along X and Y at the points marked A, B; these points represent numerical instabilities in the characteristics of the linear system and the chosen feature points. Refer to Appendix A for details.

Thus, it is important to enforce some constraints on the motion parameters to reduce the sensitivity of estimation procedure. Note that we can split the camera’s translation and rotation, rewriting Eq. 9 as

$$
\begin{align*}
\mathbf{u}_x &= \mathbf{u}_T^x + \mathbf{u}_R^x \\
\mathbf{u}_y &= \mathbf{u}_T^y + \mathbf{u}_R^y
\end{align*}
$$

(11)

where

$$
\begin{align*}
\mathbf{u}_T^x &= \frac{T_z}{Z} \left(x - \frac{f T_x}{T_z} \right) \\
\mathbf{u}_T^y &= \frac{T_z}{Z} \left(y - \frac{f T_y}{T_z} \right) \\
\mathbf{u}_R^x &= \omega_x \frac{xy}{f} - \omega_y \left(f + \frac{x^2}{f} \right) + \omega_z y \\
\mathbf{u}_R^y &= \omega_z \left(f + \frac{y^2}{f} \right) - \omega_y \frac{xy}{f} - \omega_x x
\end{align*}
$$

(12)

From Eq. 12, we note that the translation components of all optical flow vectors, intersect at the focus of expansion at $p_0 = \left(\frac{T_x}{T_z}, \frac{T_y}{T_z} \right)$. This is depicted by the red vectors in Fig. 3. We can thus compute the two translation ratios.
Figure 4. The relationship between absolute translation errors and
the sensitivity measurement $\zeta = \frac{\mu}{\lambda_1}$ of the estimation system.
(a) The absolute estimated translation errors of 150 frames of a
CT colonoscopy sequence. (b) Corresponding sensitivity measure-
ment T_x/T_z.

Longuet-Higgins [26] showed in theory that the vector
joining two object points having different depth values and
projecting on to the same pixel will point toward the
focus of expansion (FOE). We use this property and a subdivision
based method similar to [32], to detect the focus of expan-
sion. Fig. 5 shows the process of determining focus of expan-
sion. The image plane is subdivided into rectangular re-
gions (region lattice indicated by the dark dots in 5b and c)
and flow vector differences between the region center and
its neighbors are tabulated. A system of linear equations
(dense optic flow field is used) is formed, as given by
Eq. 13.

$$\sum_W \begin{bmatrix} \Delta u_x^2 & \Delta u_x \Delta u_y \\ \Delta u_x \Delta u_y & \Delta u_y^2 \end{bmatrix}$$

where $(\Delta u_x, \Delta u_y) = (u_{x1} - u_{x2}, u_{y1} - u_{y2})$ represents
the flow vector difference between the two image points. Eigen
ratio of this matrix $\delta = \frac{\lambda_{small}}{\lambda_{large}}$ is computed, and
thresholded. A line fitting algorithm is run on each region
and the intersection of these lines completes the FOE calcu-
lation.

2.3. Determining Camera Motion Parameters

As stated earlier, the translation and rotation components
of the camera are determined independently. Unlike most
subdivision methods [32, 17, 34] that use the dense flow
field, we use only the sparse flow field vectors, as they
represent stable feature points (corner points). This further
contributes to the accuracy of camera parameter estimation.

There are two steps:

Rotation Parameters. All flow vectors are transformed
into polar coordinates with the focus of expansion at the origin. This permits the translation component to be elimi-
nated as follows:

$$u \cdot e_\perp = (u_T + u_R) \cdot e_\perp = u_R \cdot e_\perp$$

where e_\perp is perpendicular to translation component (that
joins the feature point to the focus of expansion).

Translation Parameters. The rotation parameters are next substi-
tuted into Eq. 12 to remove the rotation components
from the optical flow vector for each selected feature. The
following formulation is obtained,

$$Z/T_z = \frac{\|d\|}{\|u_T\|}$$

where Z is obtained from the Z-Buffer. Thus, the removal
of the rotation parameters results in a 3×3 linear system, in
contrast to the 6×6 system used in Eq. 9. To reduce the sen-
sitivity to depth discontinuities, the mean depth value within
a local neighborhood of the feature point is used. Similarly,
a sequence of T_zs corresponding to different feature points
is computed. The median of these is chosen and outliers
removed based on a threshold. The mean of the remaining
values is the T_z estimate. Based on the position of the focus
of expansion, T_x and T_y are then determined.

Fig. 6 compares our method to that of Bruss and Horn[8]
on a 750 frame virtual colonoscopy (CT) image sequence
consisting. As reviewed in [35], Bruss and Horn’s method
was considered to be one of the more superior methods, and
a typical representative linear-square estimation method.
It can be seen that the first 127 frames produce very lit-
tle error; at this point, error starts significantly increas-
ing (magenta curve) to about 80mm at the end of the se-
quence, while the error (blue curve) using our method re-
mains around 10mm.

Fig. 7 shows a second experiment on a 652 frame colon
phantom image sequence. A bent tube with artificial polyps
glued to its interior surface was imaged using both CT and
an endoscope. Fig. 7(a) shows the camera being tracked at
frame 652, while in Fig. 7(b), Bruss and Horn’s method is
shown at the 10th frame. It can be seen that the camera has
moved out of the colon phantom (external view on the right
Figure 5. Determining focus of expansion: (a) Dense optical flow field; (b) Subdivision lattice, indicated by the dark dots; the principal orientation within each region is indicated by the red lines, (c) focus of expansion (intersection of the green lines) is determined by least-squares fitting.

Figure 6. Comparison to Bruss and Horn’s method on a 750 frame virtual colonoscopy sequence. Absolute error along \(Z \) axis. Our method results in an accumulated error of about 10mm, while Horn’s method increases to 80mm.

shows the camera at the boundary of the colon phantom). In this sequence, our proposed algorithm was able to track the colon phantom images between the first and second polyp (about 700 frames). Note the second polyp displayed for the optical and the virtual images, as marked by red arrows in Fig. 7(a). As ground truth is not available for real data, we use polyps as landmarks to evaluate our method.

3. Conclusions

In this work, we have attempted to justify the robustness and stability of our proposed tracking algorithm. Our interest focuses on tracking optical colonoscopy images, which are mostly devoid of anatomical features that can otherwise be exploited by traditional registration algorithms. Another key distinction is the less stringent requirements on accuracy; generally, the tracking algorithm needs to place the virtual images in the vicinity of the endoscopic camera, as polyps and other abnormal tissue can easily be seen during the procedure. The VC images provide a kind of navigation ‘roadmap’ aid to the physician during the procedure.

Our method demonstrated the importance of both feature selection as well as scale selection in computing optic flow fields; a scale selection metric and an iterative algorithm are proposed to compute the optimal scale. Use of an optimal spatio-temporal scale provides a robust scheme to determining the FOE, which helps us to independently compute the rotation and translation parameters of the camera. Direct methods of computing these parameters were shown using perturbation theory to be numerically unstable, and validated by experiments on both VC and OC image sequences. Finally, we have compared our approach to Bruss and Horn’s algorithm using a VC and an OC image sequence.

Our next steps include more detailed testing of our algorithm on real colonoscopy data. Additionally, the accuracy of our algorithm could be improved by reducing initialization errors. We also need to look at reinitialization, to recover from tracking failures (for instance, a long sequence of blurry frames) before this method can see application in clinical practice.

Appendix A

Here we show the difficulties in directly trying to solve the system described in Eqn. 10. The errors in optic flow can be modeled as

\[Ax = b + \delta \]

where \(\delta \) represents a perturbation vector. In terms of matrix perturbation theory[33, 9], the bound of the relative error is

\[\frac{1}{n} \kappa(A) \frac{\|b\|}{\|A\|\|x\|} \epsilon_b \mu \leq \frac{\|x - x\|}{\|x\|} \leq \sqrt{n} \kappa(A) \frac{\|b\|}{\|A\|\|x\|} \epsilon_b \]

where \(\kappa(A) \) is the condition number and \(\epsilon_b = \frac{\|\delta\|}{\|b\|} \). Assume \(A^{-1} = (r_1^T \ldots r_n^T)^T \) and \(\psi_i \) is the angle between \(r_i \) and \(\delta \), then \(\mu = \max \{ \|r_i\|/\|\psi_i\| \} / \max_k \|r_k\| \). \(x \) is the estimated value of \(x \).

Let \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) be the eigenvalues of \(A \), the

http://www.virtualcolonoscopy.nci.nih.gov
lower bound of Eq. 17 can be converted into

\[\frac{1}{n} \kappa(A) \left(\frac{\|b\|}{\|A\|} \right) \epsilon_b = \frac{1}{n} \frac{\|b\|}{\|A\|} \epsilon_b \]

\[\approx \frac{1}{n} \frac{\|b\|}{\|A\|} \epsilon_b \]

as \(\kappa(A) = \frac{|\lambda_n|}{|\lambda_1|} \) and \(\|A\| = |\lambda_n| [33] \). \(\|b\| \) can be treated as a constant since \(x \) and \(b \) are the actual input and output signals, and do not affect the estimation process. \(\epsilon_b \) relies on the measured signal and the output signal. Therefore, \(\zeta = \frac{\mu}{|\lambda_1|} \) is solely related to the linear system. If it is stable, the estimated error will be small even if the perturbation ratio \(\epsilon_b \) is high. Fig. 4 shows the relationship between the absolute translation error of the first 150 images of a virtual colonoscopy image sequence and \(\zeta \). Large translation errors are seen in X and Z on the frames close to the point marked A because \(\lambda_1 \approx 3 \times 10^{-4} \), which increases the lower bound, although \(\epsilon_b = 0.31 \) is small. At the point B, a small error along Y-axis is due to the perturbation error, \(\epsilon_b = 0.85 \) and \(\zeta = 89 \). Although it might be possible to model the optical flow estimation error it is considerably harder to model \(\zeta \) as it is dependent on the distribution of the feature points as well as the relationship between the perturbation vector and the estimation matrix. In addition, the perturbation effect is difficult to predict, as seen in point C, where the X translation error initially increases, then decreases near B.

References

