Solar Power System Analyses for Electric Propulsion Missions

Thomas W. Kerslake and Leon P. Gefert
NASA

ABSTRACT

Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 m². An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 m².

INTRODUCTION

Traditionally, electric propulsion has been proposed for interplanetary missions since it affords very mass efficient exploration architectures [1]. However, to obtain reasonable transfer times, very large power levels (multi-MW class) were required. Power requirements dropped dramatically to the 0.5 to 1.0 MW when aerobrake and cryogenic upper stage transportation technologies are utilized with electric propulsion. For ~1 MW power levels, solar photovoltaic (PV) systems are an attractive alternative to nuclear dynamic systems to satisfy power requirements.

In this architecture, the efficient solar electric propulsion (SEP) stage transfers the payload from low Earth orbit (LEO) to a High Energy Elliptical Parking Orbit (HEEPO). A high-thrust, cryogenic upper stage then injects the payload to its planetary target allowing for fast heliocentric trip times. This mission architecture, shown in Figure 1 for a human Mars mission, offers a potential reduction in mass to LEO compared to alternative approaches.
all-chemical or nuclear propulsion schemes. Such a Mars mission could take place in the 2010-2020 time frame. LEO mass savings can also be realized for outer planetary missions, such as the Europa Mapper Mission. Mass reductions may allow launch vehicle down-sizing and enable missions that would have been grounded due to cost constraints.

Figure 2 illustrates a conceptual SEP stage design for a human Mars mission [2]. This stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant and a 5800 m² PV array that spans ~110-m providing power to a cluster of eight, 100-kW, Hall thrusters and an additional 13 kW to SEP stage loads. This stage can transfer an 80 MT payload and upper stage to the desired HEEPO. By comparison, the 1980s technology international space station, when completed, will have a mass of 450 MT, a span of 110-m, 2500 m² of array area and 0.24 MW of daytime PV array power (US PV arrays only). As another comparison, the SEP PV array segments have dimensions about twice those of the next generation space telescope sun shield currently under development. Preliminary packaging studies have been performed to integrate the SEP stage with the proposed “Magnum” launch vehicle [3]. These studies showed the stowed SEP stage can meet Magnum mass and volume requirements with considerable margin.

In this article, we discuss the conceptual design and analysis for the SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies.

MISSION TRAJECTORY ANALYSIS

Human Mars Mission

The SEP stage is first used for transfer from a 51.6 inclination, 400-km circular LEO to an 800 x 65,000 km HEEPO. This transfer can take 6-12 months depending on the SEP system size and total initial mass in LEO. In HEEPO, the SEP stage separates from the Mars payload and cryogenic stage combination. The SEP stage then returns to LEO for reuse. The cryogenic stage injects the payload from HEEPO to an Earth-Mars transfer trajectory. The empty cryogenic stage then separates from the payload. The payload captures into Mars orbit using an aerocapture system.

For low-thrust electric propulsion missions, orbit transfers cannot be approximated with impulsive maneuvers. The orbit transfer must be approximated by the explicit integration of all forces acting on the vehicle, including the thrusters. For these analyses, a high fidelity trajectory integration program was used in conjunction with an innovative, four-phased analytic steering law [2]. The primary goal was to target different final HEEPOs while minimizing propellant use for fixed time transfers. A secondary goal was to minimize time spent in the Earth’s proton radiation belts (primary contributor to PV cell degradation).

Europa Mapper

The SEP mission architecture for Jovian planetary missions and Mars missions are similar in the early mission phase, i.e., LEO to HEEPO. Thereafter, the Jovian mission architecture differs. The SEP vehicle is not staged but instead injected with the payload into a 2-year, elliptical Earth orbit. An Earth gravity assist maneuver is then used to inject the spacecraft on a Jovian trajectory. Minor delta-velocity maneuvers are performed by the SEP stage prior to ejecting the electric propulsion system hardware. However, the SEP EPS remains as the spacecraft power source. And finally, a different “end game” strategy is employed. This strategy may include aerobraking, aerocapture, chemical propulsion capture and/or gravity assist “pump down” to achieve the final desired mapping orbit around Europa. The other important difference is the physical size and power requirements of the Europa SEP stage are dramatically smaller than a human Mars mission SEP stage, i.e., 15 kW in Earth orbit, compared to 1 MW. At Europa, the spacecraft power requirement drops dramatically to 200 W.

POWER SYSTEM DESIGN

The EPS employs a channelized, 500-Vdc, power management and distribution (PMAD) architecture featuring 16 channels feeding eight 100-kWe thrusters (see Figure 3, on next page). Each channel includes a PV section, a solar fine-pointing gimbal and an array regulator unit (ARU) that feeds a central power distribution unit (PDU) via power distribution cabling. Since the SEP stage operates in a solar inertial attitude, no solar tracking gimbal is required for planar PV arrays. However, for linear concentrator PV arrays, tracking gimbals are required to maintain primary axis Sun tracking within 2°.

The PDU distributes power from PV array sections to the thruster power processing units (PPUs). The PDU contains stage/payload power supplies, charge/discharge equipment for the lithium ion batteries, PV array deployment controller and microcomputer. Since the thrusters do not operate in eclipse periods, the batteries store only a modest amount of energy (about 13 kW-hr).
needed for payload and SEP stage housekeeping loads. The PDU and batteries are actively cooled by a pumped fluid loop thermal control system (TCS) with deployable aluminum honeycomb radiator panels and a pump/flow-control unit.

The 500-V PMAD voltage was selected for several reasons. It permits “direct drive” thruster operation that greatly reduces the PPU size, complexity and power loss [4]. The high voltage level reduces conductor current density allowing use of smaller gauge, less massive conductors. Yet the voltage level is low enough to still allow use of standard mil-spec aerospace power cabling. Paralleled, gage 0 copper conductors with Teflon-type insulation were selected to satisfy bundle derated current limits and provide some redundancy. Space plasma effects data (Arcing and parasitic leakage current) were measured during the PASP PLUS mission for several PV cell types biased up to ±500-V with respect to the plasma [5] Similar tests were performed on the Shuttle-based SAMPIE flight experiment [6]. And lastly, 600-V silicon and silicon-carbide based technology development is well underway at NASA for switch gear components and remote power controllers [7].

Several PV array designs and PV cell technologies were considered: 1) the space station PV array design with 8 x 8 cm, crystalline silicon PV cells (as a baseline); 2) a linear concentrator array, based on the SCARLET array design [8], employing 2 x 8 cm crystalline, 3-junction GaInP2GaAsGe cells operating at 7.5x solar concentration; 3) thin film, 3-junction, 5 x 5 cm amorphous silicon-germanium (a-SiGe) cells [9] on folded thin (2-mil) polymer membranes; and 4) 5 x 5 cm, CuInS2 thin film cells [10-12] on thin (2-mil) polymer membranes. The thin film cells are encapsulated with 1.5-mil thick FEP Teflon for isolation from the space plasma. PV array membranes are deployed using an inflatable (rigidized) longitudinal column and a flexible composite lateral member (Figure 2). The design concept is based on that proposed for the Next Generation Space Telescope Sun shield [13, 14]. Column and member properties were selected to satisfy buckling and squirming instability requirements. Properties were also chosen to ensure sufficient membrane tension (to remove membrane wrinkles and maintain membrane flatness) during thermal deformations associated with orbital sun-shade cycles.

The PV array was divided into 16 independent electrical sections each rated at approximately 50 kW. Array strings were negative grounded and contained a sufficient number of series-connected cells to provide 500+ volts maximum power voltage at end-of-life. A by-pass diode was incorporated for every 10 cells to reduce array long-term degradation. The number of parallel strings was selected to meet power requirements. PV array designs incorporate a flat copper multi-ribbon power harness encapsulated in polyimide. PV array surfaces are coated with a transparent conducting metal oxide, such as indium tin oxide, to prevent space charge buildup and arcing at high orbit altitudes.

Similar EPS architecture, designs and technology were assumed for the Europa Mapper spacecraft. The primary exception was that the PV array was assumed to consist of two rectangular wings, each rated to deliver approximately 7.5 kWe in Earth orbit.

POWER SYSTEM PERFORMANCE ANALYSIS

A dedicated Fortran computer code was written to analyze EPS performance and several orbital environments important to high-voltage operation of PV power systems in Earth orbit.

Environments

Environmental models included: thermal, particulate radiation, meteoroid/debris and plasma. The thermal model calculated incident PV array heat fluxes from the Sun, Earth albedo and Earth infrared radiation [15]. Proton and electron fluences were calculated using the AP8MIN/MAX and AE8MIN/MAX models [16]. Damage equivalent normally incident (DENI) 1-MeV electron fluence [17] was then determined using calculated effective shielding values and damage coefficients from [18]. Meteoroid/debris fluences were calculated from [19, 20] while incipient penetration and cratering area ratios were from [21, 22]. Damage from secondary ejecta impacts was not modeled. Plasma characteristics were from [23].

PV array degradation factors from other important environmental effects, such as contamination, ultraviolet (UV) radiation and thermal cycling, were incorporated via data input files. Additional environments important for PV power system operation on the Europa Mapper spacecraft include solar flare radiation events (assumed at 2 per year) [24], meteoroids, asteroids (not modeled), Jupiter and Europa radiation belts (not modeled) and Jupiter ring debris (not modeled). Galactic cosmic radiation damage was ignored due to the negligible total dose accumulated by solar cells.

Photovoltaic Arrays

PV array thermal-electrical performance was evaluated throughout the mission. Starting at the solar cell
level, current-voltage (IV) response was modeled by a single exponential relationship based on four cell parameters (short-circuit current, open-circuit voltage and maximum power current and voltage). These cell parameters were corrected for temperature, illumination and environmental factors. Cell thermal response was based on a transient, lumped-parameter energy balance model. The solar cell array IV curve was determined by voltage addition of series-connected cells and current addition of parallel-connected strings. Plasma leakage current was calculated as a function of array area and the electron thermal current density.

Energy Storage

Because of the relatively small EPS mass and performance impacts of the energy storage subsystem, lithium ion battery IV characteristics were not modeled. Instead the maximum energy storage value was calculated and the battery mass estimated as described above.

Power Management & Distribution

The PV array gimbals (if present), ARU and PDU were electrically modeled as resistive and diode voltage drops based on space station PMAD components. Power cable voltage drops were calculated based on specified resistance, operating temperature and run lengths. The small resistance of connectors was accounted for in PMAD component resistances.

Thermal Control

In addition to PVA temperatures, PMAD component temperatures were also calculated based on a transient, lump-capacitance modeling. Thermal control cooling load was calculated for the PDU and batteries and electric heater power load was calculated for all components.

RESULTS

Human Mars Mission

EPS mass and array area values are shown in Table 1 for four PV array technologies. The results show that EPS mass and size are dominated by the PV array. Moreover, the long transit times in the Earth proton belts cause tremendous power degradation. This is indicated by the high BOL power levels required to deliver 813 kW and 763 kW during the transfer to HEEPO. Because of the high degradation, non-radiation hardened PV array designs, i.e., space station, must be over-sized so much that the EPS mass (46 MT) and deployed area (13,984 m²) become unwieldy. Even when the space station cell coverglass thickness, 5-mil, was doubled or tripled, marginal performance gains were realized. The smallest array size, 3472 m², was provided by the high-efficiency, radiation-hard, concentrator array. But this array design is massive (16 MT) due to the honeycomb panel construction and lens support structures employed. In the years following SCARLET design completion, several alternative design options have been proposed that could significantly reduce the mass of a concentrator array [25]. Clearly, the lightest EPS options (9-12 MT range) employ thin panel PV arrays. However, thin panel arrays require significant deployed areas (6000-9000 m² range) due to their relatively low conversion efficiencies. Of the thin film cell options, the CuInS₂ cells provides superior projected performance and no Staebler-Wronski losses which allows for the smallest feasible PV array size. However, the CuInS₂ cell design and manufacturing maturity is lower than the competing a-SiGe cell technology that has a strong terrestrial manufacturing base [26].

Current, voltage and power at the PPU input for the a-SiGe array option is shown in Figure 4. Power falls rapidly during the first 200-days as the SEP stage spirals through the proton belts and sustains the bulk of the

![Fig. 4. Power to Hall Thrusters](image)

Table 1. SEP Stage EPS sizing results versus PV array technology

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ISS c-Si Conc.</th>
<th>Linear Conc.</th>
<th>a-SiGe Thin Film</th>
<th>CuInS₂ Thin Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOL Power (kW)</td>
<td>1270</td>
<td>948</td>
<td>1154</td>
<td>1050</td>
</tr>
<tr>
<td>EPS Mass (MT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV Array</td>
<td>40.0</td>
<td>16.0</td>
<td>7.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Array Gimbals</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Batteries</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>PMAD</td>
<td>4.3</td>
<td>3.5</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td>TCS</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Total PV Array</td>
<td>46.1</td>
<td>21.4</td>
<td>12.3</td>
<td>9.4</td>
</tr>
<tr>
<td>Area (m²)</td>
<td>13984</td>
<td>3472</td>
<td>8978</td>
<td>5808</td>
</tr>
<tr>
<td># cells/string</td>
<td>1450</td>
<td>270</td>
<td>340</td>
<td>883</td>
</tr>
<tr>
<td># strings</td>
<td>992</td>
<td>912</td>
<td>9504</td>
<td>2388</td>
</tr>
<tr>
<td>DEII Fluence (#/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>1.0E16</td>
<td>2.2E14</td>
<td>5.9E14</td>
<td>5.9E14</td>
</tr>
<tr>
<td>Voltage</td>
<td>2.6E16</td>
<td>3.7E14</td>
<td>1.3E15</td>
<td>1.3E15</td>
</tr>
<tr>
<td>Max. Leakage</td>
<td>257</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

IEEE AES Systems Magazine, January 2001
mission radiation damage. Once the vehicle apogee is above ~4 Earth radii, little addition degradation is incurred. From 400 to 800 days, an 1100 km parking orbit is maintained to await the next payload transfer opportunity. This orbit is below the main proton belt and thus, little radiation dose is accumulated during this time period. During the second LEO to HEEPO transfer, power degrades somewhat more, but the 763 kW power requirement is met.

PV array current degradation factors are shown in Figure 5 for the a-SiGe array. The largest contributor to degradation is radiation damage followed by Staebler-Wronski loss and then encapsulant transmission loss. The sinusoidal variation in the current loss factor reflects the yearly change in solar insolation.

Figure 6 shows the DENI fluence, given in electrons/cm², predicted for the a-SiGe array option. Cell voltage, with a 1.3E15 fluence, is more sensitive to the radiation environment than is cell current, with a fluence of 5.9E14.

Figure 7 shows the plasma parasitic leakage current for the space station cell technology. Early in the mission, the SEP stage altitude is low and electron densities are high. As such, the space station type array collects over 250 amps during short periods of time. To maintain SEP stage potential near that of the plasma, excess electrons must be rejected. This is accomplished by operating the thruster cathode at a higher current than is necessary for beam neutralization. During eclipse periods when the thrusters are not operating, the array voltage is negligible and electrons are not collected. If the SEP stage is in sunlight with the thrusters not operating, most of the arrays strings will be shunted to manage power production as well as manage stage floating potential. Based on flight test data and the relatively small deployed area, the concentrator array has very small parasitic leakage current. The thin film arrays are assumed to be perfectly insulated and grounded. Under these assumptions, few electrons will be collected. As the mission proceeds, however, high voltage cells and conductors will be exposed to the plasma as the result of impact craters, delamination, etc. Under this scenario, the electron current collection is still negligible based on the calculated area exposed and plasma sheath geometry.

PV array temperature is shown in Figure 8, on next page, for the a-SiGe array. Throughout most of the mission, the array operates in the 50° to 75°C temperature range. Occasionally, very cold temperatures, i.e. -155°C, are predicted during eclipse periods at moderately high apogees of 32,000 km. Most PMALI components remained within their allowable operating temperature ranges for
most of the mission. Early in the mission, the PDU and batteries hit their upper operating temperature limits and active cooling is required. This cooling load reached a maximum of 22 kWt and then falls off to 0 kWt after ~130 days into the mission. Sporadically, the PDU reached its lower temperature limit. Thus, heater power in the range of 100 to 200 W was required for a short time interval during some eclipse periods.

Europa Mapper

Table 2 shows EPS mass, array area, power and temperatures for the Europa spacecraft at 1 AU and at 5.2 AU (Jovian orbit). At an EPS mass of only 151 kg, the thin film a-SiGe array option is clearly lighter than the concentrator array option for the same performance. This array would require two wings, each with a 53 m² area. At Jupiter, with a −130°C array temperature, the EPS could provide about 400 W to spacecraft loads at the beginning of the end game. Allowing for a 50% loss in power due to radiation degradation during a 1-year pump down and a 1-year Europa mission, the 200 W power requirement could still be met assuming the arrays wings could track the Sun without large pointing loss.

CONCLUSIONS

Based on a conceptual design and detailed performance calculations, an EPS design for a Human

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PV Array Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS Mass (kg)</td>
<td>α-SiGe</td>
</tr>
<tr>
<td>PV Array Area (m²)</td>
<td>Conc.</td>
</tr>
<tr>
<td>Power (kWe)</td>
<td></td>
</tr>
<tr>
<td>1.0 AU</td>
<td>15.5</td>
</tr>
<tr>
<td>5.2 AU</td>
<td>0.40</td>
</tr>
<tr>
<td>PV Array Temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>1.0 AU</td>
<td>49.1</td>
</tr>
<tr>
<td>5.2 AU</td>
<td>-120.7</td>
</tr>
</tbody>
</table>

- At the beginning of end game

Mars Mission SEP stage was developed that fully met power requirements with reasonable mass, 9.4 MT, and feasible deployed array area, 5800 m². The SEP architecture is also attractive for outer planetary missions. An EPS was designed to meet the 15 kW Hall thruster and 200 W Europa Mapper spacecraft power requirements at a mass of 151 kg and a total array deployed area of 106 m².

REFERENCES

Letter

Editor:

There is a resounding "YES" to redefining AESS based on the changing culture in the Dallas-Fort Worth, Texas, metroplex area. I left defense work at Raytheon Systems Company, Lewisville, Texas, when the operation moved to Tuscon, Arizona, in October 1999. Besides the remaining Raytheon operations in McKinney, Garland, and Greenville, Texas, the largest aerospace employers in the area are Lockheed Martin and Bell Helicopter Textron both located in Fort Worth, Texas.

The fastest growing technologies are in telecommunications in which I now work. The IEEE Communications and Vehicular Technology (CVT) Chapter has a membership of nearly 2000, and holds monthly luncheons with an average attendance of 200.

Recently, we have had Distinguished Lecturers — Dr. Eli Brookner, Dr. Myron Kayton, and Robert Hill — speak at the Dallas AESS Chapter meetings. I would like to see this list of available speakers expanded to include other technology areas.

Email addresses for all active Chapter Chairmen would be useful. And please include links to area newsletters in AESS' field of interest.

Please update my information as Region 5 Dallas Chapter Chairman as shown below:

Ron Ogan
Sr. RF Systems Engineer
Nokia Networks
(Radio Access Systems)
6000 Connection Drive
Building 4E-4428
Irving, TX 75039, USA
(972) 894-6009
E-mail: rtogan@fastlane.net