Full-Wave Analysis of a Split-Cylinder Resonator for Nondestructive Permittivity Measurements

Michael D. Janezic, Member, IEEE, and James Baker-Jarvis, Senior Member, IEEE

Abstract—This paper presents a full-wave analysis of the split-cylinder resonator. We outline a model where the fringing fields are rigorously accounted for and the resonance condition is derived. Using this model, a method for nondestructively measuring the complex permittivity of materials is examined. Measurements of the complex permittivity for low-loss dielectric materials using the split-cylinder resonator agree well with measurements made in a cylindrical cavity. An uncertainty analysis for the complex permittivity is also provided.

Index Terms—Dielectric losses, dielectric measurement, nondestructive testing, permittivity measurement, resonators.

I. INTRODUCTION

The most precise means of determining the complex permittivity of low-loss dielectrics are resonator methods. Commonly used resonator techniques include the dielectric-post resonator, cylindrical cavity, and the whispering-gallery-mode method [1]. Although usually limited to a single frequency, these resonant methods provide the needed accuracy that broad-band methods lack. A disadvantage of these techniques is that samples must be accurately machined into a symmetrical geometry such as a cylinder. Since sample machining is destructive and sometimes expensive, conventional resonator methods are rarely used for large-scale quality-control purposes.

Kent developed a resonator technique that allows for nondestructive measurements of complex permittivity [2], [3]. This method, the split-cylinder resonator technique, uses a cylindrical cavity, which is separated into two halves, as shown in Fig. 1. A sample is placed in the gap between the two shorted cylindrical waveguide sections. A TE_{011} resonance is excited, and from measurements of the resonant frequency and the quality factor, one determines the complex permittivity of the sample. In terms of sample geometry, the only requirements are that the sample must extend beyond the diameter of the two cavity sections and the sample must be flat. This provides the accuracy of a resonator technique without having to machine the sample.

Unfortunately, having little or no sample preparation comes at the cost of needing a more comprehensive model for the split-cylinder resonator. In conventional resonator methods, the boundary-value problem is relatively straightforward since the electric and magnetic fields are confined to the sample or within a metallic cavity. However, for the split-cylinder resonator, a gap exists between the two cylindrical waveguide sections, and the electric and magnetic fields extend into the sample outside of the cylindrical waveguide regions.

Kent, in his original model [2], correctly recognized that neglecting the fields in the region of the sample outside of the waveguide sections would lead to a systematic error in the measured permittivity. He initially proposed a correction to the measured permittivity based on a perturbation calculation. Later, Kent and Bell developed an improved approximation to correct the initial model [4].

In contrast, this paper presents a full-wave analysis of the split-cylinder resonator, derived in Section II. In our model, we assume that the fields are confined to regions of the cylindrical waveguide and sample. We also assume the sample is infinite in the radial direction. The model includes the TE_{011} resonant mode plus evanescent TE_{0m} modes in the cylindrical waveguide regions. These modes must be included to properly satisfy the boundary conditions at the boundaries between the sample and waveguides. To derive the resonance condition, we applied a Hankel transform with respect to the radial coordinate, reducing the problem to one dimension [5], [6]. We calculated the complex permittivity of several low-loss ceramic materials from measured data. For comparison, we measured the same samples in a conventional cylindrical cavity. Finally, we identify the largest sources of error in the complex permittivity measurement and perform an uncertainty analysis.
II. Derivation of the Resonance Condition

A. Transverse Fields in the Upper Cavity Region

From the symmetry of the split-cylinder resonator and the assumption that we are exciting only TE_{mn} modes, the electric field in the upper cavity region has only a ϕ-component of the form

$$E_{\phi_u}(\rho, z) = \sum_{n=1}^{\infty} A_n R_n(\rho) Z_{mn}(z)$$ \hspace{1cm} (1)

where A_n is a constant, $R_n(\rho)$ is a radial eigenfunction, and $Z_{mn}(\rho)$ is a longitudinal function. If we substitute (1) into the vector wave equation

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_0 \mu_0 c^2 \vec{E} = 0$$ \hspace{1cm} (2)

we obtain

$$\frac{1}{R_n} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho \frac{\partial R_n}{\partial \rho} \right] - \frac{1}{\rho^2} + k^2 = -\frac{1}{Z_{mn}} \frac{\partial^2 Z_{mn}}{\partial z^2} = k_n^2$$ \hspace{1cm} (3)

where $k^2 = \omega^2 \varepsilon_0 \mu_0 c^2$, k_n^2 is the separation constant, ω is the radial frequency, and $\varepsilon_0 \mu_0$ is the relative permittivity of the air within the cylindrical cavity section. Note that we have assumed a time dependence of $e^{j\omega t}$. We use the method of separation of variables to solve for $R_n(\rho)$ and $Z_{mn}(z)$. Applying this method to (3), we find

$$E_{\phi_u}(\rho, z) = \sum_{n=1}^{\infty} A_n \left[C_n^* J_1(h_n \rho) + D_n^* Y_1(h_n \rho) \right]$$

$$\cdot \left[\frac{A_n}{k_n} \sin \left[k_n \left(L + \frac{d}{2} - z \right) \right] + \frac{B_n}{k_n} \cos \left[k_n \left(L + \frac{d}{2} - z \right) \right] \right]$$ \hspace{1cm} (4)

where $A_n^*, B_n^*, C_n^*, D_n^*$ are constants, J_1 is the Bessel function of the first kind of order one, Y_1 is the Bessel function of the second kind of order one, and $k_n^2 = k^2 - k_n^2$. The boundary conditions on the transverse electric field yield

$$E_{\phi_u}(\rho, z = L + \frac{d}{2}) = 0 \rightarrow Z_{mn}(z = L + \frac{d}{2}) = 0, \hspace{1cm} 0 \leq \rho \leq a$$ \hspace{1cm} (5)

$$E_{\phi_u}(\rho = 0, z) \text{ is finite} \rightarrow R_n(\rho = 0) \text{ is finite}, \hspace{1cm} (6)$$

$$E_{\phi_u}(\rho = a, z) = 0 \rightarrow R_n(\rho = a) = 0, \hspace{1cm} 0 \leq z \leq L + \frac{d}{2}.$$ \hspace{1cm} (7)

It follows that

$$\frac{D_n'}{D_n} = 0$$ \hspace{1cm} (8)

$$D_n' = 0$$ \hspace{1cm} (9)

$$h_n = \frac{j_n \rho}{a}$$ \hspace{1cm} (10)

where j_n is the nth zero of J_1, and (4) reduces to

$$E_{\phi_u}(\rho, z) = \sum_{n=1}^{\infty} A_n R_n(\rho) \sin \left[k_n \left(L + \frac{d}{2} - z \right) \right]$$ \hspace{1cm} (11)

where

$$R_n(\rho) = \mathcal{A}_n C_n^* J_1(h_n \rho) = C_n J_1(h_n \rho).$$ \hspace{1cm} (12)

From the differential form of Faraday’s law

$$\nabla \times \vec{E} = -j \omega \mu_0 \vec{H}$$ \hspace{1cm} (13)

and (11) we find the ρ-component of the magnetic field

$$H_{\rho_u}(\rho, z) = -\frac{1}{j \omega \mu_0} \sum_{n=1}^{\infty} k_n A_n R_n(\rho) \cos \left[k_n \left(L + \frac{d}{2} - z \right) \right].$$ \hspace{1cm} (14)

In order to find expressions for C_n, we orthonormalize the radial eigenfunctions R_n. Substituting (12) into the orthonormalization condition

$$\int_0^a \rho R_n(\rho) R_m(\rho) d\rho = \delta_{nm}$$ \hspace{1cm} (15)

we find

$$C_n = \frac{\sqrt{2}}{a J_0(h_n a)}$$ \hspace{1cm} (16)

where J_0 is the Bessel function of the first kind of order zero.

To reduce the number of coordinates from two to one, we take the Hankel transforms of $E_{\phi_u}(\rho, z)$ and of $H_{\rho_u}(\rho, z)$ with respect to ρ. The Hankel transform of a function $f(\rho)$ is defined as

$$\tilde{f}(\zeta) = \int_0^a \rho f(\rho) J_1(\zeta \rho) d\rho$$ \hspace{1cm} (17)

and the inverse Hankel transform is

$$f(\rho) = \int_0^\infty \tilde{f}(\zeta) J_1(\zeta \rho) d\zeta.$$ \hspace{1cm} (18)

The Hankel transforms of (11) and (14) are

$$\tilde{E}_{\phi_u}(\zeta, z) = \sum_{n=1}^{\infty} A_n \tilde{R}_n(\zeta) \sin \left[k_n \left(L + \frac{d}{2} - z \right) \right]$$ \hspace{1cm} (19)

and

$$\tilde{H}_{\rho_u}(\zeta, z) = -\frac{1}{j \omega \mu_0} \sum_{n=1}^{\infty} k_n A_n \tilde{R}_n(\zeta) \cos \left[k_n \left(L + \frac{d}{2} - z \right) \right]$$ \hspace{1cm} (20)

where

$$\tilde{R}_n(\zeta) = \int_0^a \rho J_1(\zeta \rho) R_n(\rho) d\rho.$$ \hspace{1cm} (21)

We perform this integration exactly by substituting (12) and (16) into (21) as follows:

$$\tilde{R}_n(\zeta) = \frac{\sqrt{2}}{\zeta^2 - h_n^2} h_n J_1(\zeta a).$$ \hspace{1cm} (22)
B. Transverse Fields in the Lower Cavity Region

As a result of symmetry, the transverse fields in the lower cavity region are

$$
\hat{E}_{\psi}(\zeta, z) = \sum_{n=1}^{\infty} A_n \hat{R}_n(\zeta) \sin \left[k_n \left(L + \frac{d}{2} + z \right) \right]
$$

$$
\hat{H}_{\rho}(\zeta, z) = \frac{1}{j \omega \mu_0} \sum_{n=1}^{\infty} k_n A_n \hat{R}_n(\zeta) \cos \left[k_n \left(L + \frac{d}{2} + z \right) \right].
$$

C. Transverse Fields in the Sample Region

In our model, we assume that the sample is infinite in the radial direction and that the magnetic and electric fields can exist anywhere along the sample. However, we assume a conductive ground plane above and below the sample in the region outside the cylindrical waveguide sections. Therefore, any electric or magnetic fields outside the cylindrical waveguide regions must be confined to the sample.

In the sample region, as in the cavity regions, only modes are considered. Therefore, the vector wave equation (2) is also satisfied in the sample region as follows:

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) \hat{E}_{\phi}(\rho, z) - \frac{1}{\rho^2} + \omega^2 \mu_0 \epsilon_0 \epsilon_r \hat{E}_{\phi}(\rho, z) = 0.
$$

Taking the Hankel transform of (25) and integrating by parts twice, we get

$$
\hat{E}_{\phi}(\zeta, z) = S(\zeta) \cos(k_\zeta z) + T(\zeta) \sin(k_\zeta z)
$$

where $k_\zeta^2 = \omega^2 \mu_0 \epsilon_0 \epsilon_r - \zeta^2$, ϵ_r is the relative permittivity of the sample, and S and T are coefficients. The split-cylinder resonator symmetry requires that

$$
\hat{E}_{\phi}(\zeta, z = \frac{d}{2}) = \hat{E}_{\phi}(\zeta, z = -\frac{d}{2})
$$

must hold for all $0 \leq \zeta \leq \infty$, and (26) simplifies to

$$
\hat{E}_{\phi}(\zeta, z) = S(\zeta) \cos(k_\zeta z).
$$

Again, using (13), we determine the transverse magnetic field

$$
\hat{H}_{\rho}(\zeta, z) = -\frac{k_\zeta}{j \omega \mu_0} S(\zeta) \sin(k_\zeta z).
$$

D. Resonance Condition

In order to derive the resonance condition, we match boundary conditions. The tangential electric and magnetic fields are continuous at $z = d/2$

$$
\hat{E}_{\phi}(z = \frac{d}{2}) = \hat{E}_{\phi}(z = \frac{d}{2}), \quad 0 \leq \zeta \leq \infty
$$

$$
\hat{H}_{\rho}(z = \frac{d}{2}) = \hat{H}_{\rho}(z = \frac{d}{2}), \quad 0 \leq \zeta \leq a.
$$

Substituting the transformed electric and magnetic fields into (30)–(31), we find

$$
\sum_{n=1}^{\infty} A_n \hat{R}_n(\zeta) \sin(k_n L) = S(\zeta) \cos(k_\zeta \frac{d}{2})
$$

$$
\sum_{n=1}^{\infty} k_n A_n \hat{R}_n(\zeta) \cos(k_n L) = k_\zeta S(\zeta) \sin(k_\zeta \frac{d}{2}).
$$

If we take the inverse Hankel transform of (33) with respect to ζ

$$
\sum_{n=1}^{\infty} k_n A_n R_n(\rho) \cos(k_n L)
$$

$$
= \int_0^\infty \zeta J_1(\zeta \rho) k_\zeta S(\zeta) \sin(k_\zeta \frac{d}{2}) d\zeta.
$$

Multiplying both sides of (34) by $\rho R_m(\rho)$ and integrating over the interval $[0, a]$

$$
k_m A_m \cos(k_m L) = \int_0^\infty \zeta J_1(\zeta \rho) k_\zeta S(\zeta) \sin(k_\zeta \frac{d}{2}) d\zeta.
$$

Using (32), we solve for S as follows:

$$
S(\zeta) = \frac{1}{\cos(k_\zeta \frac{d}{2})} \sum_{m=1}^{\infty} A_m \hat{R}_m(\zeta) \sin(k_m L),
$$

Substituting (36) into (35), we find

$$
\mathbf{X} \hat{A} = 0
$$

where

$$
X_{mn} = -k_m \cos(k_m L) \delta_{mn} + \sin(k_m L) \int_0^\infty k_\zeta \tan(k_\zeta \frac{d}{2}) \zeta J_1(\zeta \rho) k_\zeta \sin(k_\zeta \frac{d}{2}) d\zeta
$$

and \hat{A} is a column vector of the coefficients A_m. The linear system of equations (37) has a nontrivial solution only if

$$
\det[\mathbf{X}] = 0
$$

which is the resonance condition. Given the measured resonant frequency, (39) yields the relative permittivity of the sample.

III. FRINGING FIELDS IN THE SAMPLE REGION

In the previous section, we derived an expression for the electric and magnetic fields in the sample region. In the model, we assumed that the sample was infinite in the radial coordinate and that the fields existed anywhere along the sample. However, since we measure samples with finite diameters, it is important to understand how large the sample diameter must be in order for the assumption of an infinite sample to be valid. Toward this end, we computed the electric field in the sample region. We begin with the transformed electric field (28). Substituting (36) for S into (28)

$$
\hat{E}_{\phi}(\zeta, z) = \frac{1}{\cos(k_\zeta \frac{d}{2})} \sum_{m=1}^{\infty} A_m \hat{R}_m(\zeta) \sin(k_m L) \cos(k_m z),
$$

(40)
Takıng the inverse Hankel transform of (40), we get
\begin{equation}
E_{\phi_0}(\rho, z) = \sum_{n=1}^{\infty} A_n \sin(k_n L) \int_{0}^{\infty} \frac{\cos(k_n z/2)}{\cos(k_n d/2)} \cdot R_n(\zeta) d\zeta.
\end{equation}

Using (41), we computed the normalized electric field in the middle of the sample \((z = 0)\) as a function of \(\rho\), sample thickness, and sample relative permittivity.

Fig. 2 shows the magnitude of the normalized electric field as a function of \(\rho\) and sample thickness for a sample whose relative permittivity is ten. The electric field extends beyond the cylindrical waveguide radius, especially as the thickness of the sample becomes large. This is consistent with our intuition that the fields in the sample region outside of the cylindrical waveguide are significant. However, the graph also shows that the electric field is negligible when \(\rho\) is approximately 30 mm. Thus, for this cavity, whose radius is approximately 19 mm, we can assume that the sample is infinite in the radial direction in the model without introducing any systematic error if the sample radius is 30 mm and larger.

Fig. 3 shows the magnitude of the normalized electric field as a function of \(\rho\) and sample thickness for a sample whose thickness is 2.5 mm. This also shows that for a wide range of sample thicknesses, there exists some electric field in the sample beyond the cylindrical waveguide radius. For the various sample permittivities, the value of the normalized electric field at the cavity radius was between 7%–8% of the peak normalized electric field, a value which is not negligible. As was the case in Fig. 2, the electric field is also negligible at values of \(\rho\) larger than 30 mm.

IV. COMPLEX PERMITTIVITY MEASUREMENTS

We applied the split-cylinder resonator method to determine the complex permittivity of four low-loss ceramic samples. Each sample, approximately 3–5-mm thick with a 60-mm diameter, was placed between the two waveguide sections of the split-cylinder resonator and the resonance curve for the TE_{011} mode was examined on an automatic network analyzer. An example of a typical resonance is shown in Fig. 4. From the resonance curve, we obtained the resonance frequency \(f_0\) and the quality factor \(Q\).

In order to determine the real part of the sample permittivity \(\epsilon'_{rs}\), we use the resonance condition
\begin{equation}
\det[X] = 0.
\end{equation}

If the sample length, cavity diameter and length, and the resonant frequency are known, the sample permittivity \(\epsilon'_{rs}\) is the only unknown in (42). However, we cannot solve for \(\epsilon'_{rs}\) explicitly, thus, we employ the Newton–Raphson method to iteratively solve for \(\epsilon'_{rs}\). Although the Newton–Raphson method requires an initial guess, good convergence occurred even when the initial guess deviated 50% from the sample permittivity for the samples we considered.
TABLE II

<table>
<thead>
<tr>
<th>Sample</th>
<th>Frequency (GHz)</th>
<th>ϵ'_rs (New theory)</th>
<th>ϵ'_rs (Kent theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9</td>
<td>4.805</td>
<td>9.82 ± 0.04</td>
<td>9.70</td>
</tr>
<tr>
<td>S13</td>
<td>4.368</td>
<td>13.57 ± 0.05</td>
<td>13.42</td>
</tr>
<tr>
<td>S16</td>
<td>4.131</td>
<td>16.66 ± 0.07</td>
<td>16.49</td>
</tr>
<tr>
<td>S20</td>
<td>3.866</td>
<td>20.87 ± 0.09</td>
<td>20.67</td>
</tr>
<tr>
<td>Cylindrical Cavity</td>
<td>Frequency (GHz)</td>
<td>ϵ'_rs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.727</td>
<td>9.80 ± 0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.717</td>
<td>13.55 ± 0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.711</td>
<td>16.64 ± 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.705</td>
<td>20.81 ± 0.16</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Typical resonance curve for the split-cylinder resonator.

The theoretical model assumes an infinite number of evanescent TE_{0n} modes in the cylindrical waveguide regions of the split-cylinder resonator. Practically, we can use only a finite number of TE_{0n} modes. Table I shows permittivity results for the four samples as a function of the number of TE_{0n} modes used in the model. For all four samples considered, convergence in ϵ'_rs is achieved with eight modes in the model.

In order to verify the accuracy of the split-cylinder measurements, we measured the same four samples in a cylindrical resonator [7]. Although the measurements in the cylindrical cavity occur at a slightly higher frequency, the samples are low-loss and the permittivity should be nearly the same. Table II shows good agreement in ϵ'_rs between the two resonator methods as both measurements lie within the uncertainty bound of the other.

Table II also shows a comparison between the calculated permittivity of the four samples using both the new split-cylinder theory and the theory developed by Kent [4]. The results using Kent’s theory show a consistent downward bias in the calculation of the sample permittivity. This discrepancy is most likely due to the approximations Kent made in determining the fringing fields in the sample.

Before we can discuss the measurement of the sample loss tangent $\tan \delta_s$, we must examine the definition of the quality factor

$$Q = \frac{u(W_c + W_s)}{P_c + P_l + P_s}$$ \hspace{0.5cm} (43)

where W_c and W_s are the average energy stored in the cavity sections and sample, and P_c, P_l, and P_s are the power dissipated per second in the cavity walls, coupling loops, and sample. To evaluate each W and P term requires complicated integrations, thus, we make several simplifying approximations. First, as seen in Table IV, the resonance is coupled at a low level, normally below ~ 50 dB. Therefore, we assume that the resistive losses due to the coupling loops are negligible and we neglect P_l. Also, for the samples we considered, the TE_{0n} modes in the cylindrical waveguide sections were evanescent. Thus, we also assume W_c and P_c are also negligible. With these approximations, (43) reduces to

$$Q \approx \frac{uW_s}{P_s} = \frac{1}{\tan \delta_s}.$$ \hspace{0.5cm} (44)

Thus, we obtain the sample loss tangent by taking the inverse of the measured quality factor Q.

To verify the validity of the approximations made in (44), we compared the loss-tangent measurements made in the split-cylinder resonator to those made in the cylindrical cavity. From Table III, we find good agreement between the two methods for all four samples. This confirms our hypothesis that a majority of the electromagnetic energy is stored in the sample and almost all of the power is dissipated within the sample.

As with the case of the sample permittivity, Table III shows a comparison of loss-tangent measurements of the four samples using the method described above and the theory developed by Kent. The agreement between the two methods

$$\Delta \epsilon'_rs = \sqrt{\left[\frac{\partial \epsilon'_rs}{\partial a} \Delta a \right]^2 + \left[\frac{\partial \epsilon'_rs}{\partial L} \Delta L \right]^2 + \left[\frac{\partial \epsilon'_rs}{\partial d} \Delta d \right]^2 + \left[\frac{\partial \epsilon'_rs}{\partial f_0} \Delta f_0 \right]^2}$$ \hspace{0.5cm} (45)
TABLE III

<table>
<thead>
<tr>
<th>Sample</th>
<th>Frequency (GHz)</th>
<th>tan δ_s (New theory)</th>
<th>tan δ_s (Kent theory)</th>
<th>Frequency (GHz)</th>
<th>tan δ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9</td>
<td>4.866</td>
<td>(2.8 ± 0.6) × 10^-4</td>
<td>3.0 × 10^-4</td>
<td>9.727</td>
<td>(2.5 ± 3) × 10^-4</td>
</tr>
<tr>
<td>S13</td>
<td>4.368</td>
<td>(1.4 ± 0.3) × 10^-4</td>
<td>1.2 × 10^-4</td>
<td>9.717</td>
<td>(1.1 ± 1) × 10^-4</td>
</tr>
<tr>
<td>S16</td>
<td>4.131</td>
<td>(0.8 ± 0.2) × 10^-4</td>
<td>0.8 × 10^-4</td>
<td>9.711</td>
<td>(0.4 ± 4) × 10^-4</td>
</tr>
<tr>
<td>S20</td>
<td>3.866</td>
<td>(1.6 ± 0.3) × 10^-4</td>
<td>1.4 × 10^-4</td>
<td>9.705</td>
<td>(2.0 ± 1) × 10^-4</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ΔParameter</th>
<th>Δε'_rs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical Waveguide Radius</td>
<td>0.05 mm</td>
<td>0.069</td>
</tr>
<tr>
<td>Cylindrical Waveguide Length</td>
<td>0.06 mm</td>
<td>0.002</td>
</tr>
<tr>
<td>Sample Thickness</td>
<td>0.01 mm</td>
<td>0.051</td>
</tr>
<tr>
<td>Resonant Frequency</td>
<td>0.0005 GHz</td>
<td>0.011</td>
</tr>
</tbody>
</table>

The authors thank G. Kent and E. Kuester for their insightful comments and suggestions.

REFERENCES

Michael D. Janezic (S’93–M’95) received the B.S. degree in electrical engineering, the Masters degree from the University of Colorado at Boulder, in 1991 and 1996, respectively, and is currently working toward the Ph.D. degree in electrical engineering with a specialization in electromagnetic theory.

Since 1988, he has worked with the Radio Frequency Technology Division, National Institute of Standards and Technology, Boulder, CO. His research interests include complex permittivity measurements of bulk and thin-film materials.

James Baker-Jarvis (M’89–SM’90) was born in Minneapolis, MN. He received the B.S. degree in mathematics and the M.S. degree in physics from the University of Minnesota at Minneapolis-St. Paul, in 1975 and 1980, respectively, and the Ph.D. degree in theoretical physics from the University of Wyoming, Laramie, in 1984.

Following graduation, he was an AWU Post-Doctoral Fellow for one year, involved with theoretical and experimental aspects of intense electromagnetic fields in lossy materials and dielectric measurements. He then spent two years as a temporary Assistant Professor in the Physics Department, University of Wyoming, where he was involved with electromagnetic heating processes, maximum-entropy techniques, taught classes, and performed research on electromagnetic propagation in lossy materials. Until 1988, he was an Assistant Professor of physics at North Dakota State University. In January 1989, he joined the National Institute of Standards and Technology (NIST), Boulder, CO, where his interests are in the areas of materials, dielectric and magnetic spectroscopy, and nondestructive evaluation. He has authored numerous publications in such diverse areas as dielectric and magnetic measurements, electromagnetics, kinetic theory of fracture, hydrodynamics, heat transfer, maximum-entropy methods, and numerical modeling.

Dr. Baker-Jarvis was a recipient of an NIST Bronze Medal.