IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 4, APRIL 1988

Fig. 3. TE–TM mode conversion efficiency for (a) linearly polarized hybrid modes and (b) circularly polarized hybrid modes.

for 0 < z < l. The wavelength in vacuum is \(\lambda_0 = 1.15 \mu \text{m} \), and the film thickness \(d_0 = 0.2262 \lambda_0 \). The hybrid modes are circularly polarized because we have anisotropic polar configuration in this case. Then, the hybrid mode beam waves propagate as shown in Fig. 2(b) \(\tan \theta^+ = 0.001475, \tan \theta^- = 0.001643 \). The conversion efficiency is shown in Fig. 3(b), where the beam width is \(W = 50 \mu \text{m} \).

In the case of pure imaginary \(\varepsilon_{33} \) (i.e., gyrotropic polar case), the hybrid modes have linear polarizations perpendicular to each other. Then, \(\theta^+ = 0 \) and \(\theta^- = 0 \). The propagation path of the beam waves and the conversion efficiency are shown in Fig. 2(a) and Fig. 3(a), respectively. Complete TE–TM mode conversion is available at \(\Delta \beta l = (2n - 1)\pi, n = 1, 2, \ldots \).

III. CONCLUSIONS

We have given TE–TM mode conversion efficiency when a Gaussian beam wave propagates in thin-film optical waveguide with uniaxial anisotropic substrates. It should be noted that the direction of power flow of hybrid modes depends on the polarization when the TE–TM mode conversion is described as coupling between the two hybrid modes. For efficient TE–TM mode conversion, it is desirable that the uniaxial anisotropic substrates have a configuration sufficient to produce the linearly polarized hybrid modes, i.e., anisotropic longitudinal and gyrotropic polar configurations. The property of oblique power flow of the hybrid modes may be useful for thin-film waveguide-type optical deflectors and optical power dividers.

REFERENCES

Two-Layer Dielectric Microstrip Line Structure: SiO_2 on Si and GaAs on Si: Modeling and Measurement

R. A. Lawton, Senior Member, IEEE, and Wallace T. Anderson, Member, IEEE

Abstract—Further development is reported of the modeling of the two-layer dielectric microstrip line structure by computing the scattering parameter \(S_2 \), derived from the model and comparing the computed value with the measured value over the frequency range from 90 MHz to 18 GHz. The sensitivity of the phase of \(S_2 \) and the magnitude of the characteristic impedance to various parameters of the equivalent circuit is

Manuscript received June 25, 1987; revised October 30, 1987.
R. A. Lawton was with the National Bureau of Standards Boulder, CO. He is now with Boulder Research Associates, Boulder, CO 80303.
W. T. Anderson is with the Naval Research Laboratory, Washington, DC 20375.
IEEE Log Number 8719443.

U.S. Government work not protected by U.S. copyright.
also discussed. Examples are given of the measurement and modeling of the SiO2 on silicon system to 18 GHz and the modeling of the GaAs on silicon system to 100 GHz.

I. INTRODUCTION

The two-layer dielectric microstrip line structure is a structure that has found use in a number of applications. Two examples are as follows: In [1] the two-layer structure is used to make a pulse waveform filter with useful characteristics, while in [2] one layer (a silicon layer) is used to provide a high-quality substrate for gallium arsenide devices.

To further amplify the application described in [2], the advantages of integrating GaAs devices on Si substrates include the possibilities of GaAs monolithic microwave integrated circuits (MMIC's) and/or GaAs digital IC's with Si VLSI, electro-optical GaAs devices with Si VLSI, GaAs power FET's on Si substrates for operation above 10 GHz making use of the higher thermal conductivity of Si, and allowing GaAs IC's to be fabricated on much larger diameter Si substrates (> 7.5 cm) than are now available for GaAs. Well-behaved GaAs MESFET's [4] and bipolar transistors [5] have been fabricated on GaAs molecular beam epitaxy (MBE) layers grown on Si. For low-loss applications, methods have been developed to grow high-resistivity GaAs layers on Si by low-temperature MBE (104 Ω cm) [6] and by V-doped metal-organic chemical vapor deposition (MOCVD) (107 Ω cm) [7].

Preliminary modeling of microstrip lines made from such structures has been described [1], [8]–[10]. Similar analyses have been developed for the increasingly important coplanar waveguide case [11]. In the previous work by Lawton et al. [1], the equivalent circuit relations developed by Hasegawa [8] were used to calculate an approximate relation for the microstrip line characteristic impedance and the transition duration of the microstrip line to a step input signal. This approximate relation was then compared with values determined experimentally. In this report, the complete equations for the characteristic impedance and propagation constant of the stripline are developed, including planar skin effect, and used in the calculations without the approximations of [1]. A measurement is then made of the S parameters of the stripline on an automatic network analyzer. In the process, an algorithm is used which transforms the data to the time domain and sets a time window which discards data due to the connectors, so that one is left with data due to the semiconductor stripline itself. The data are then transformed back to the frequency domain.

II. THEORY

The structure of the two-layer dielectric transmission system is shown in Fig. 1. A more generalized form of the equivalent circuit will be used here than that of Hasegawa [8] and Lawton et al. [1]. This more general equivalent circuit will allow for loss in both dielectric layers and skin effect in the metallization. This equivalent circuit is shown in Fig. 2. Therefore the series impedance is given by

\[Z(j\omega) = j\omega L + R + k_\text{skin} j\omega \]

(1)

and the shunt admittance is given by

\[Y(j\omega) = \frac{1}{\frac{1}{G_1 + j\omega C_1} + \frac{1}{G_2 + j\omega C_2}} \]

(2)

where

\[R = 1/(\sigma_w wT) \]

\[L = \mu_0 (d_1 + d_2) / \omega \]

\[C_1 = \epsilon_0 \epsilon_r d_1 / \omega \]

\[G_1 = \sigma_1 / d_1 \]

\[C_2 = \epsilon_0 \epsilon_r d_2 / \omega \]

\[G_2 = \sigma_2 / d_2 \]

\[\omega = \text{angular frequency} \]

The term \(k_\text{skin} j\omega \) represents an impedance term due to planar skin effect. The terms \(\mu \) and \(\epsilon \) represent permeability and permittivity, respectively, with the subscripts denoting the medium (0 denotes free space). The other parameters are as defined in Fig. 1. The superscript denotes effective values that take into account fringing and a mixed dielectric. The defining relations for these effective values are given in [1] and [3].

With the above parameters in (1) and (2), one can calculate the series impedance and shunt admittance elements. One can then substitute (1) and (2) into the expressions for the characteristic impedance:

\[Z_0(j\omega) = \sqrt{Z(j\omega)Y(j\omega)} \]

(3)

and the propagation constant:

\[\gamma(j\omega) = \sqrt{Z(j\omega)Y(j\omega)} \]

(4)

These are the parameters which are required to evaluate the behavior of the stripline with a microwave measurement system. However since most modern microwave measurements are made in terms of S parameters, it is desirable to make the further calculation:

\[S_{21}(j\omega) = e^{-\gamma(j\omega)t}. \]

(5)
This expression is valid for the transmission between two reference planes on a uniform transmission line, which is the case in Fig. 1. The phase of S_{11} is given by the imaginary part of the exponent and the attenuation is given by $20 \times \log_{10} |S_{21}|$.

III. Calculation for SiO$_2$ on Si

For ease of calculation and modeling, the complete calculations of Z_0 and the attenuation were performed on an electronic spreadsheet program which had integrated graphics. This integration made it very convenient to test a value for a parameter, compare the resulting calculation of the attenuation for example with the measured value, and then quickly try another value.

IV. Experimental Results

An automatic network analyzer was used to make measurements on a microstrip line structure consisting of silicon dioxide on silicon. The parameters of the structure were estimated before being measured using dimensional and conductivity measurements together with published values for the permittivity and permeability of both dielectric layers. This estimation process resulted in the following values:

- $\sigma_d = 4.6 \times 10^7$ S/m
- $\varepsilon_d = 4.0$
- $\sigma_{Si} = 11.7$
- $\varepsilon_{Si} = 34.5$ S/m
- $\sigma_{SiO_2} = 0$
- $d_1 = 15 \mu m$
- $d_2 = 300 \mu m$
- $w = 90 \mu m$
- $T = 7 \mu m$
- $l = 5.04 \text{cm}$

The frequency range of the measurements was 90 MHz to 18 GHz and a windowing algorithm was used. This algorithm consisted of transforming the data to the time domain, deleting the data that corresponded to parts of the circuit not in the microstrip line itself, and retransforming back to the frequency domain. In other words only data in the time domain window that corresponded to the spatial location of the microstrip line were used. This had the effect of gating out all the reflections in the connectors to the microstrip line and in the transitions from coax to waveguide. The application of this windowing algorithm and the large number of data points (200) resulted in a smooth variation of the actual experimental data plotted in Fig. 3. The windowing algorithm may have contributed some smoothing.

The various parameters in the model, L, C_1, C_2, G_1, and R, were adjusted, and it was found that the phase of S_{11} and the characteristic impedance were affected to first order only by L and C_1. Referring to the low-frequency approximate relations for Z_0 and $\beta(\omega)$, the imaginary part of $\gamma(\omega)$, in [1], eqs. (8) and (9), we have

$$Z_0 = \sqrt{L/C_1}$$

$$\beta(\omega) = \omega \sqrt{LC_1}.$$

(6)

(7)

The sensitivity experiment confirms that these relations are good approximations over much of the range of the measurements reported here. Therefore a measurement of the magnitudes of Z_0 and $\beta(\omega)$ by curve fitting allows one to solve (6) and (7) to obtain a unique solution for L and C_1 within this approxima-
The calculated attenuation is given in Fig. 4 for one value of \(u_2 \) and four values of \(u_1 \). Fig. 5 gives the attenuation for one value of \(w \) and three values of \(\sigma \), however, above 20 GHz the simple low-frequency model will not give accurate results. Note that the conductivity of the gallium arsenide layer is not zero, as was the case for the silicon dioxide layer. These curves illustrate the change in behavior of the attenuation versus frequency for various values of \(u_1 \) and \(u_2 \). The width \(w \) was chosen to obtain a characteristic impedance of about 50 \(\Omega \) for \(d_1 = 4 \mu m \) and values of \(\sigma \) greater than a few S/m (resistivity less than about 100 \(\Omega \cdot \text{cm} \)). Such values of \(\sigma \) are required to achieve a constant characteristic impedance over a significant range of frequencies. Different values of \(T \) also were tried, but the only change was in the low-frequency attenuation, as expected.

These calculations were repeated for \(d_1 = 1 \mu m \), with very little change in the attenuation characteristics. What changes did occur were at the higher frequencies and were not consistent in direction (increase or decrease).

V. CALCULATION FOR GaAs ON Si

Having demonstrated the feasibility of determining the equivalent circuit parameters of microstrip lines from measurements, calculations were performed for the important two-layer dielectric case consisting of gallium arsenide on silicon. The purpose of this calculation was to see what range of attenuation to expect using typical dimensions that one might encounter in high-speed integrated circuits. To be consistent with typical materials that can be used for the technology appropriate to GaAs on Si, the following parameters were assumed for these calculations:

- \(\sigma_{\text{Au}} = 1.5 \times 10^7 \text{ S/m} \) (6.67 \(\times 10^{-6} \text{ B/cm} \))
- \(\epsilon_r = 11.5 \)
- \(\epsilon_r = 12.5 \)
- \(\sigma_1 = 0.002 \text{ to } 10.0 \text{ S/m} \) (5 \(\times 10^4 \text{ to } 10 \text{ \Omega \cdot cm} \))
- \(\sigma_2 = 0.01 \text{ to } 1.4 \text{ S/m} \) (6 \(\times 10^4 \text{ to } 71 \text{ \Omega \cdot cm} \))
- \(d_1 = 4 \mu m \)
- \(d_2 = 610 \mu m \)
- \(w = 10.7 \mu m \)
- \(T = 1 \mu m \)
- \(l = 1.0 \times 10^{-3} \text{ m} \)

The calculated attenuation is given in Fig. 4 for one value of \(\sigma_2 \) and four values of \(\sigma_1 \), Fig. 5 gives the attenuation for one value of \(\sigma_1 \) and three values of \(\sigma_2 \). Results are given to 100 GHz; however, above 20 GHz the simple low-frequency model will not give accurate results. Note that the conductivity of the gallium arsenide layer is not zero, as was the case for the silicon dioxide layer.

These curves illustrate the change in behavior of the attenuation versus frequency for various values of \(\sigma_1 \) and \(\sigma_2 \). The width \(w \) was chosen to obtain a characteristic impedance of about 50 \(\Omega \) for \(d_1 = 4 \mu m \) and values of \(\sigma \) greater than a few S/m (resistivity less than about 100 \(\Omega \cdot \text{cm} \)). Such values of \(\sigma_2 \) are required to achieve a constant characteristic impedance over a significant range of frequencies. Different values of \(T \) also were tried, but the only change was in the low-frequency attenuation, as expected.

These calculations were repeated for \(d_1 = 1 \mu m \), with very little change in the attenuation characteristics. What changes did occur were at the higher frequencies and were not consistent in direction (increase or decrease).

VI. CONCLUSIONS

The above results demonstrate the capability to determine the model parameters from network analyzer measurements of structures important to microwave integrated circuits. We have determined that the microstrip line inductance and capacitance of the SiO_2 layer can be uniquely determined by fitting equivalent