Dissipation in High-Temperature Superconductors in a Magnetic Field

D.H. Kim, K.E. Gray, R.T. Kampwirth, D.B. McDonald, and D.M. McKay

Materials Science Division,
Argonne National Laboratory,
Argonne, Illinois, 60439, USA

Abstract

The absence of a Lorentz force dependence on dissipation in the highly anisotropic high-temperature superconductor, Tl2Ba2CaCu2Ox, has been measured over a wide range of current densities in broadened resistive transitions, current-voltage characteristics, magnetoresistances, and critical current densities, Ic. The temperature resistances are very useful to find out the correct temperature and field dependences of the activation energy. As an alternative to flux motion, we consider a Josephson-coupling model which is consistent with the broadened resistive transitions and the lack of Lorentz-force dependence. We found that the Josephson-coupling model agrees with the temperature dependences of the activation energy and Ic and is better matched to the weak field dependence of Ic than the flux creep model. Possible origins of Josephson junctions in high-quality films and single crystals are discussed.

Introduction

Recent studies of the broadened resistive transitions of high-temperature superconductors (HTS) in a magnetic field, H, have shown essentially no macroscopic Lorentz force dependence in the highly anisotropic HTS, Bi2Sr2CaCu2O8, Tl2Ba2CaCu2O8 and recently in YBa2Cu3O7. Since the Lorentz force is essential to understand such dissipations in terms of magnetic flux motion, these results questioned the role of the Lorentz force in this loss mechanism. We have measured the broadened resistive transitions, magnetoresistance, current-voltage characteristics, I(V), and critical current densities, Ic, in highly-oriented films of Tl2Ba2CaCu2O8 for both orientations of the field with respect to the transport current for field parallel to the CuO plane (H||a). These measurements span the temperature range from 4.2 K to 100 K in fields up to 10 T, and no significant dependence on the macroscopic Lorentz force is ever found.

As an alternative to flux motion, we consider a Josephson coupling model for dissipation which has satisfactorily explained similar results in granular NbN films. This model gives a natural explanation of the lack of any Lorentz-force dependence and is consistent with the broadened resistive transitions. A detailed comparison of the predictions of Josephson-coupling and flux creep models to Tl2Ba2CaCu2O8 shows that the Josephson-coupling model is consistent with the temperature dependences of Ic and the activation energy, U, and is better matched to the weak field dependence of Ic. Although the flux creep model fits the experimental result for U, it predicts a much stronger temperature and field dependence of Ic than is found. Possible origins of Josephson junctions in high-quality films and single crystals are discussed.

Sample Preparation

Sputtered films of Tl2Ba2CaCu2O8 were prepared in a three-gun dc magnetron sputtering system. Three targets of Tl, Ca, and a 1:1 Ba/ Ca mixture are simultaneously sputtered in 20 m Torr of Ar and 4x10-3 Torr of O2. The films were deposited onto (100) single-crystalline substrates of MgO, which were kept at 210 °C during deposition. The films were wrapped in gold foil together.

Manuscript received September 24, 1990

with TlBaCaCuO bulk materials and annealed in flowing O2 at 870 °C for 6 min, then slowly cooled at a rate of 10 °C/min. X-ray diffraction analysis indicated a high degree of orientation of the 2212 phase with its c-axis perpendicular to the substrate, with the full-width at half maximum (FWHM) of the rocking curve for Tl2Ba2CaCu2O8 films consistently being 50° for the (001) peak. Resistance, Ic and I(V) measurements were performed in a 4He gas-flow cryostat equipped with 13.5-T superconducting solenoid.

Resistive transitions and Magnetoresistivity

H||a

The resistive transitions, ρ(T,H), for Tl2Ba2CaCu2O8 films for field perpendicular to the c-axis display just minor differences between the data for H||a and H||c compared to the overall effect as shown in Fig. 1. The resistivity for H||a is higher for all field values, but the difference in resistivity between two orientations decreases with the field strength as H-0.5, which is unlikely to be the case of a flux-motion induced dissipation. As an alternative to flux motion, the Josephson coupling model can give a natural explanation of the lack of any Lorentz-force dependence and is consistent with the broadened resistive transitions. In order to shed further light on this issue, the resistivities for H||a for the Tl2Ba2CaCu2O8 films were fit to:

\[\rho(T,H) = \rho_0 \exp \left(\frac{U(T,H)}{T} \right) = \rho_0 \exp \left(\frac{U_0(H)}{T} \right) \left(1 - \frac{\eta}{T} \right) \] (1)

![Fig. 1. Resistive transitions for H||a and H||c for field parallel to the CuO plane. Solid curve shows a one-parameter fit to Eq 1 for H||c. The parameters used are \(\rho_0 = 1.2 \times 10^{-5} \Omega \text{cm} \), \(T_c = 104.2 \text{ K} \) and \(q=2 \).](image-url)
In the case of H‖c, the resistive transitions shown in Fig. 3 are significantly broader, and the magnetoresistivities shown in Fig. 4 are quite different from the case of H‖a. A structure is clearly seen in the log of ρ(H) vs 1/H plot. This suggests that the activation energy is no longer a simple form of 1/H as for H‖a. All ρ(H) curves display downward curvatures below ρ(H) ~ 5×10⁻⁶ Ωcm, and they show upward curvatures above that. This demarcation value is closely related to a sharper drop found in the resistive tails. Indeed in a fit of the resistive tails to Eq 1, a larger value of q was needed to fit the sharper drop of the ρ(T) below about 10⁻⁷ Ωcm. This sharper drop could result from a change in the dissipation. To address this possibility, a fit of the tails was performed excluding the portions below 10⁻⁷ Ωcm, and the results with U=2200 (1-T/7)¹.⁵/H⁰.⁷¹ are shown as the solid curves in Fig. 3. The U–H⁻⁰.⁷¹ dependence agrees with the upward curvatures found in Fig. 4. The qualitative difference of the resistive tails and

where the activation energy U(T,H) is assumed to have the form
Uo(H)(1−t)², and t = T/Tco(H). All fitting of the resistive transitions are done over three orders-of-magnitude in fixed ranges of ρ between 10⁻⁹ to 10⁻⁵ Ωcm as a compromise between the double transitions and noise.

We selected q=2, Tco(H)=104.2 K, ρo = 1.2×10⁻⁵ Ωcm and found the excellent agreement with experiments shown in Fig. 1. The only free parameter is given by:

\[U_o(H) = 64500 \, [K] / (\mu_0 H)^{1.09}. \]

(2)

A detailed description of the fitting procedure will be published elsewhere.⁵

Given a number of free parameters, there are many degrees of freedom to fit the resistive tails. Therefore, an independent measurement is needed to check whether the results of the fit are the correct description of the experiments, not due to an arbitrary selection of free parameters. Magnetoresistivities, which is another way of viewing the resistive tails, can be used for this purpose.

The magnetoresistivities, ρ(H), below Tco were measured up to 9T to further understand the functional form of U. The log of ρ(H) is plotted in Fig. 2 as a function of 1/μ₀H, (the unit area of the flux line lattice is proportional to 1/H). They display a linear dependence of U on 1/H over the whole ranges of T and H where the fits of Eq 1 were performed in resistive transitions. Such linear dependence of U on 1/H is consistent with the result of the above fit, i.e., Eq 2. Moreover we found that the slopes of the log of ρ(H) vs 1/H in Fig. 2 in turn were well described by the temperature dependence of (1−t)².

The resistive tails were also measured as a function of current in films of Tl₂Ba₂CaCu₂O₈₋ₓ. At higher current densities, the tails are stretched out to the lower temperatures, but the minor differences between H‖a and H‖c remain unchanged. These results at higher current densities clearly demonstrate that the lack of a macroscopic Lorentz force dependence does not depend on J.

Fig. 2. Magnetoresistivities below Tco for H‖a.

Fig. 3. Resistive transitions for H‖c. The parameters used are q=1.5 Tco(0) = 104.2 K and μ₀dHdμT = 2T/K.

Fig. 4. Magnetoresistivities below Tco for H‖c.
magnetoresistivities from those for Hlla probably indicates that the mechanism of dissipation could be different in this orientation. Since this paper is mostly concentrated on the Lorentz force dependence for Hlla, the data for Hllc will not be discussed any further.

Current-voltage Characteristics and Critical Currents

For Hlla, the I(V) near the resistive tail region display only minor differences between HllI and HlII for all H and T indicating no Lorentz-force dependence. At the lower temperatures, the I(V) show a characteristic different shape exhibiting negative curvature. This negative curvature allows a natural definition of I_c without requiring an ambiguous voltage criterion. However, a voltage criterion for determining the $I_c(H,T)$ is more convenient, and the customary 1 μV/cm was used to define I_c. For Hlla, these data are shown in Fig. 5, superimposed for both orientations of H with respect to current: there is no evidence for a macroscopic Lorentz-force dependence from 4.2 K to 93 K in fields up to 10 T.

Since the $I_c(H,T)$ shown in Fig. 5 are determined from a voltage criterion, a value is always measured whether the I(V) exhibits negative curvature or just represents a continuous spreading of the resistive transition. Thus, we display the onset of negative curvature of I(V) in Fig. 5 with the solid line, and point out that it corresponds closely to the rapid decreases of I_c with field, found at the higher temperatures.

Comparison with Josephson Coupling and Flux Creep Model

All the transport measurements reported in this paper, I_c as a function of temperature and Hlla, show little or no dependence on the macroscopic Lorentz force. Even if the small differences shown in Fig. 1 are real, the broadened resistive transitions, magnetoresistivities, I(V) and I_c for Hllc are so similar to HllI that the Lorentz force is at most a perturbation. Such absence of the Lorentz force in all the measurements favors another mechanism than flux flow for the dissipation in Tl$_2$Ba$_2$CaCu$_2$O$_x$ films. We consider a Josephson-coupling model which is consistent with the broadened resistive transitions and the lack of Lorentz-force dependence on all properties reported in this paper. At this point, it is valuable to perform a detailed comparison of the experiments with the Josephson-coupling and flux creep models.

In classical Josephson junctions, U is proportional to the Josephson critical current, I_c, in zero field. In finite field using Abrikosov solution for the vortex lattice, U near T_c is given as $U = -(1-\mu H_0 H_0^2) \cdot (1-t) q$, where $I_c = -(1-t) q$. For Tl$_2$Ba$_2$CaCu$_2$O$_x$, the $U(H,T) = -(1-t)^2 / H_0^{1.09}$ was obtained from the fit of $p(T,H)$ shown in Fig. 1, and $I_c(H,T) = (1-t)^2 / H_0^{0.24}$ was obtained using only values for which the I(V) exhibit negative curvature (above the solid line in Fig. 6). This T dependence is consistent with SIS junctions in which the boundary conditions of Deutscher and Müller 7 are applied to the order parameter at the insulator boundary or the superconductor-normal-superconductor (SNS) proximity junctions in which $U = -(1-t)^2 \exp(-\alpha t)$ with a material dependent constant α. 8

The flux creep model of Tinkham 9 predicts $U(T,H) = \mu_0 H^2 V_d$, where the superconducting condensation energy is multiplied by the volume triggering the flux jump, $V_d = \xi D / \Phi_0$. Hence, $U(T,H) = (1-t) H^2$ consistent with the experiment for Hlla. This model 9,10 also derives $L = \mu_0 H^2 V_d$, where V_d is the volume of the minimum region triggering an activated event and L is the typical distance moved. The
interpretation of results on YBa$_2$Cu$_3$O$_7$ films led to an evaluation of V_g and L leading to $I_c(1-T)\mu_0$, then $I_c(1-T)/\mu_0$. This is clearly too strong a dependence for both temperature and field when compared to our measurements. This result is the main difference with the Josephson coupling models, for which I_c-U.

The above comparisons are not sufficient to rule out any mechanism considered for dissipation in Tl$_2$Ba$_2$CaCu$_2$O$_8$, for Hllc. Our results indicate that the temperature dependences of I_c and U are the same, favoring the Josephson-coupling model. However, it would be useful to have more specific predictions about the parameters for the flux creep model. In addition, it is possible that the dissipation mechanisms for I_c and the resistive tails (through U) are different: this is unappealing since they both exhibit the same Lorentz-force independence, but, e.g., they could be inter- and intra-granular Josephson junctions since I_c was not checked in the single crystal work.

Discussion

The Josephson coupling model has satisfactorily explained similar results in granular NbN films. In this case, the junctions occurred laterally in the film plane, across insulating boundaries between the columnar grains. However, it should be emphasized that the measurements on HTS were made on single crystals or very large-grained thin films which do not have obvious structural defects to produce Josephson junctions as do the granular NbN films. Daeumling et al. have recently proposed a model of field-induced granularity in single crystals of YBa$_2$Cu$_3$O$_7$ which convincingly explains their magnetization data. In this model, the field suppresses the superconductivity in regions that are already weakened by either point or extended microscopic defects, which are not seen in conventional analyses of these crystals. Oxygen vacancies were postulated for single crystals of YBa$_2$Cu$_3$O$_7$.

Another possible origin is Josephson coupling between superconducting layers, in this case the intrinsic CuO$_2$ planes. These interlayer junctions play a role in transport properties if current flow is not confined to individual CuO$_2$ planes, but must cross to other planes by Josephson tunneling. The probability of microscopic defects, stacking faults in CuO$_2$ planes, or fluctuations blocking the current flow is drastically increased in the two-dimensional (2D) CuO$_2$ planes compared to 3D superconductors. For a very weak coupling in Tl$_2$Ba$_2$CaCu$_2$O$_8$, thermal fluctuations in the Josephson coupling between CuO$_2$ planes could be important in transport properties of the system, such as resistive losses.

Both the Josephson junction and flux creep models are rather vague, and a better prediction for the field dependence of the Josephson coupling model in the highly anisotropic HTS like Tl$_2$Ba$_2$CaCu$_2$O$_8$ is still needed. Nonetheless, assuming that both I_c and U are limited by the same Josephson junctions, the different field dependences of I_c and U, which is strictly proportional to I_c in the Josephson coupling model, means that the relevant area of the junctions, A_J, must depend on field as $H^{-0.85}$. The magnitude of $A_J(H)$ is harder to assess since we cannot assume $I_c=I_c$, A_J, as for the columnar grains of NbN, because the specific junction geometry is not known and it could be between CuO$_2$ planes.

Note that since the Tl$_2$Ba$_2$CaCu$_2$O$_8$ films are polycrystalline, albeit with a high degree of c-axis orientation, Josephson coupling could be between the grains. However, similar results obtained on single crystals of Tl$_2$Ba$_2$CaCu$_2$O$_8$ suggest that the Lorentz-force-independent characteristics are not a result of thin-film grains.

Summary

The universal lack of a Lorentz force dependence on dissipation in the highly anisotropic HTS like Tl$_2$Ba$_2$CaCu$_2$O$_8$ are measured for Hllc by the broadened resistive transitions, magnetoresistances, current-voltage characteristics and critical current densities. We found that the magnetoresistivities are very useful to view the resistive tails from a different angle. As an alternative to flux motion, we consider a Josephson-coupling model which is consistent with the broadened resistive transitions and the lack of Lorentz-force dependence on all properties reported in this paper. The main difference between the Josephson-coupling and flux-flow models is the ratio I_c/U; it is temperature independent in the Josephson-coupling model, but proportional to 1-1 for the modified flux creep model. Our results of the same temperature dependences of I_c and U better agree with the Josephson-coupling model. The weak field dependence measured for I_c is better matched to the Josephson-coupling model. Although no definitive choice of model can be made, the Josephson-coupling model agrees at least as well as flux creep. For Hllc, the qualitative difference of the resistive tails and magnetoresistivities from those for Hllc probably indicates that the mechanism of distillation could be different in this orientation.

Acknowledgement

This work supported by the U.S. Department of Energy, Division of Basic Energy Sciences-Materials Sciences, under contract #W-31-109-ENG-38 and the National Science Foundation-Office of Science and Technology Centers under contract #STC-8809854. DMM acknowledges support from the Division of Educational Programs, Argonne National Laboratory.

References